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A DERIVATIVE-FREE ALGORITHM FOR INEQUALITY
CONSTRAINED NONLINEAR PROGRAMMING VIA SMOOTHING
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Abstract. In this paper we consider inequality constrained nonlinear optimization problems
where the first order derivatives of the objective function and the constraints cannot be used. Our
starting point is the possibility to transform the original constrained problem into an unconstrained
or linearly constrained minimization of a nonsmooth exact penalty function. This approach shows
two main difficulties: the first one is the nonsmoothness of this class of exact penalty functions which
may cause derivative-free codes to converge to nonstationary points of the problem; the second one is
the fact that the equivalence between stationary points of the constrained problem and those of the
exact penalty function can only be stated when the penalty parameter is smaller than a threshold
value which is not known a priori. In this paper we propose a derivative-free algorithm which
overcomes the preceding difficulties and produces a sequence of points that admits a subsequence
converging to a Karush–Kuhn–Tucker point of the constrained problem. In particular the proposed
algorithm is based on a smoothing of the nondifferentiable exact penalty function and includes an
updating rule which, after at most a finite number of updates, is able to determine a “right value”
for the penalty parameter. Furthermore we present the results obtained on a real world problem
concerning the estimation of parameters in an insulin-glucose model of the human body.

Key words. derivative-free optimization, constrained optimization, nonlinear programming,
nondifferentiable exact penalty functions

AMS subject classifications. 65K05, 90C30, 90C56

DOI. 10.1137/070711451

1. Introduction. We consider the following problem:

(1)
min f(x)
s.t. g(x) ≤ 0,

Ax ≤ b,

where x ∈ Rn, f : Rn → R, g : Rn → Rm, A ∈ Rp×n, b ∈ Rp, and we assume that
f and g are twice continuously differentiable on Rn. We denote by a�

j , j = 1, . . . , p,
the rows of matrix A and by

F = {x ∈ Rn : Ax ≤ b, g(x) ≤ 0}

the feasible set of problem (1). We assume that the derivatives of the objective and
nonlinear constraint functions can be neither calculated nor explicitly approximated.
Indeed, in many engineering problems the analytic expressions of the functions defin-
ing the objective and constraints of the problem are not available and their values
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are computed by means of complex simulation computer programs. For further mo-
tivations on the necessity of using derivative-free methods we refer the reader to the
survey paper [14].

In the literature, some globally convergent derivative-free methods for the solution
of problem (1) have been proposed. In [20] a pattern search algorithm is used within
a sequential augmented Lagrangian approach. Essentially, the method embeds the
pattern search algorithm proposed in [18], within the augmented Lagrangian method
[6], which is the basis for the subroutine AUGLG in the LANCELOT optimization
package. More recently, in [15] a generating set direct search augmented Lagrangian
algorithm is proposed which explicitly handles the linear constraints.

In [1] the filter method proposed in [10] is adapted to include a pattern search
minimization strategy. Basically, the method employs a “filter” for acceptance of the
points produced by the pattern search local optimizer.

In [2] a so-called extreme barrier approach is employed. Namely the constrained
problem is converted to an unconstrained one by setting the objective function value
to infinity for infeasible points. To minimize this extreme barrier function, the authors
propose an extension of the generalized pattern search class of algorithms which allows
local exploration in an asymptotically dense set of directions. More recently, in [3]
Audet and Dennis propose a mesh adaptive direct search algorithm which uses a
progressive barrier strategy and allows infeasible starting points.

Similarly to [20, 15, 2] and [3], in this paper we propose an algorithm which is
based on the idea of employing a derivative-free method to solve a linearly constrained
reformulation of problem (1). Our approach differs from the preceding ones in that
we use the fact that one can solve problem (1) by minimizing a nonsmooth exact
penalty function over a set defined by the linear constraints of problem (1). How-
ever, nonsmooth exact penalty functions cannot be straightforwardly combined to a
globally convergent derivative-free algorithm. Indeed, the following theoretical and
computational aspects should be carefully taken into account.

• Ill-conditioning of merit functions. This aspect makes the minimization of
such functions a difficult task, especially for derivative-free codes which use
only evaluations of the objective function.
• Nondifferentiability of the penalty function. The lack of differentiability may

have negative effects on the convergence of derivative-free methods to sta-
tionary points of the penalty function. Indeed, most of the unconstrained
derivative-free methods require the objective function to be at least continu-
ously differentiable.
• Equivalence between stationary points of the penalty function and KKT pairs

of problem (1). An exact penalty function enjoys its exactness properties only
if the penalty parameter is below a certain threshold value which is not known
a priori. This aspect is crucial also in the case where derivatives are available.

As regards the first point, we introduce a new exact penalty function which penal-
izes only the nonlinear constraints and does this penalization in such a way to reduce
as much as possible the ill-conditioning.

The nondifferentiability of the new penalty function is tackled by employing the
smoothing technique proposed in [4, 31]. In particular, in order to find a stationary
point of the penalty function by minimizing the smooth approximation, we adapted
the method proposed in [21] to solve linearly constrained finite minimax problems.

As for the last point, the properties of the smooth approximation allow us to
define a suitable updating rule for the penalty parameter ε. This rule, after a finite



A DF ALGORITHM FOR NONLINEAR PROGRAMMING 3

number of reductions, is able to find a right value for ε so as to convey the desirable
exactness properties to the penalty function.

To conclude, we propose a globally convergent algorithm which is based on the
derivative-free minimization of a smooth approximation of a nondifferentiable exact
penalty function which does an �∞ penalization of the constraints. Moreover, this
new algorithm exploits the structure of the problem by allowing an explicit handling
of the linear constraints.

In regards to a possible practical interest of the proposed approach, we recall
the encouraging results described in [12]. In fact, [12] reports an extensive numerical
testing and comparison which point out significant computational advantages in using
a smooth approximation of an exact �∞ penalty function in the field of derivative-free
methods.

Even though the main aim of this paper is the definition of a new algorithm and
the study of its theoretical properties, we also show that a rough implementation of
the method is able to solve successfully a real world problem concerning the estimation
of parameters in an insulin-glucose model of the human body. This result seems to
confirm further the conclusion of [12].

This paper is organized as follows. In section 2, the exact penalty function ap-
proach is introduced and discussed. Section 3 is devoted to the description of a smooth
approximation technique along with some preliminary properties. In section 4, the
derivative-free method is presented and its global convergence is studied. Section 5 is
devoted to the solution of the constrained parameter estimation problem. Finally, in
section 6, we draw some conclusions.

We end this section by introducing some notations which will be used in the rest
of this paper. Given a set S, we denote by

◦
S and S̄, respectively, the interior and the

closure of S. By ‖ · ‖ we indicate the Euclidean norm. The following index sets will
be used in this paper:

I0(x) := {i : gi(x) = 0}, Iπ(x) := {i : gi(x) ≥ 0}, Iν(x) := {i : gi(x) < 0},
J(x) := {j : a�

j x = bj}.
2. An exact penalty function approach. As already said in the introduction,

the first step of our approach is that of defining and using a penalty function which
will be more tractable from a computational point of view. Namely, a penalty function
which

(i) has a structure that presents fewer nonlinearities than previous exact penalty
functions [9];

(ii) allows direct handling of linear and bound constraints thus penalizing only
the nonlinear ones.

As regards point (i), nondifferentiable globally exact penalty functions were in-
troduced in [9] for nonlinear programming problems of the form

(2)
min f(x)
s.t. g(x) ≤ 0.

In order to prove the relevant exactness properties, it is necessary to introduce a
compact relaxation of the feasible set F .

Thus, following [9], given a vector α ∈ Rm such that αi > 0, i = 1, . . . , m, the set

Dα = {x ∈ Rn : g(x) ≤ α}
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is considered. Then, on the interior of set Dα, the penalty function

Q(x; ε) = f(x) +
1
ε

max
{

0,
g1(x)

α1 − g1(x)
, . . . ,

gm(x)
αm − gm(x)

}

can be defined, where the terms αi − gi(x) make Q(x; ε) go to infinity when x ap-
proaches the boundary of Dα, thus guaranteeing the compactness of its level sets.

In [9], it is shown that Q(x; ε) is a globally exact penalty function for problem (2);
that is, a value ε� > 0 for the penalty parameter exists such that for every ε ∈ (0, ε�]
the solution of problem (2) is equivalent to the solution of

(3) min Q(x; ε) s.t. x ∈ ◦
Dα,

which, essentially, amounts to an unconstrained minimization of Q(x; ε), due to the

fact that
◦
Dα is an open set. More precisely, a value ε� > 0 for the penalty param-

eter exists such that for every ε ∈ (0, ε�], every local (global, stationary) point of
problem (3) is a local (global Karush–Kuhn–Tucker (KKT)) point of problem (2) and
conversely.

However, we note that the structure of Q(x; ε) is such that two contrasting effects,
tied with the choice of parameters α and ε, may arise. Indeed, rewriting

Q(x; ε) = f(x) + max
{

0,
g1(x)

ε(α1 − g1(x))
, . . . ,

gm(x)
ε(αm − gm(x))

}
,

two conflicting requirements become apparent. On the one hand, in order to limit
the ill-conditioning of the penalty function near the boundary of the compact set Dα,
sufficiently large αi’s should be chosen. On the other hand, the exactness properties
follow only when the constraints are sufficiently penalized, that is, when the terms
ε(αi − gi(x)) are sufficiently small on all Dα. Hence, choosing large αi’s requires very
small values of ε thus increasing the ill-conditioning of the penalty function whenever
at least one term (αi−gi(x)) exists which is not excessively large. Besides, reasonable
values for ε preclude the possibility of choosing large values for the αi’s, that is, the
possibility of choosing sets Dα having the boundary sufficiently away from the feasible
region.

In order to overcome the preceding difficulties, we introduce the following new
penalty function:

Z(x; ε) = f(x) + max
{

0,

(
1
ε

+
1

α1 − g1(x)

)
g1(x), . . . ,

(
1
ε

+
1

αm − gm(x)

)
gm(x)

}
,

where the terms gi(x)/ε (needed to achieve the exactness properties) and gi(x)/(αi−
gi(x)) (required to guarantee the compactness of the level sets) are split in such a way
that they no longer interfere one another. Introducing the functions

ĝi(x; ε) =
(

1 +
ε

αi − gi(x)

)
gi(x), i = 1, . . . , m,

ĝ0(x; ε) = 0, Z(x; ε) can be rewritten in the compact form

Z(x; ε) = f(x) +
1
ε

max
i=0,1,...,m

{ĝi(x; ε)}.

As regards point (ii), the need for an “ad-hoc” handling of the constraints arises
every time they can be partitioned into two subsets of “difficult” and “easy” con-
straints. A more traditional approach to problem (1) would be that of penalizing all
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the constraints by adding to the objective function a penalty term for every constraint.
However, every penalty term increases the nonlinearities and the ill-conditioning of the
penalty function. This, in turn, would surely result in a difficult problem to solve es-
pecially for a derivative-free method. On the other hand, many efficient derivative-free
methods exist which are able to solve linearly and bound constrained optimization
problems by explicitly handling the linear and bound constraints [19, 22, 30]. For
this reason, instead of problem (2), we consider problem (1) and penalize only the
nonlinear constraints.

To this aim, we shall prove that a threshold value ε� > 0 exists such that, for all
ε ∈ (0, ε�], problem (1) is equivalent to

(4)
min Z(x; ε)
s.t. Ax ≤ b,

x ∈ ◦
Dα .

Note that the new structure of the penalty function along with the presence of
the linear constraints and, hence, the fact that Z(x; ε) is to be minimized on the set

{x ∈ Rn : Ax ≤ b, x ∈ ◦
Dα}, makes the analysis of [7, 9] not readily applicable.

Therefore, in the following subsections, we analyze the theoretical properties and
connections between problems (4) and (1), by adapting the analysis carried out in
[7, 9].

In what follows we denote

Sα =
◦
Dα ∩ {x ∈ Rn : Ax ≤ b}.

2.1. Definitions and assumptions. In order to state the equivalence between
problems (1) and (4), we introduce the following assumptions which we require to
hold true throughout this paper. They are standard assumptions in a constrained
context.

Assumption 1. The set S̄α is compact.
Assumption 2. At any point x ∈ S̄α, a vector d ∈ T (x) exists such that

∇gi(x)�d < 0 ∀ i s.t. gi(x) ≥ 0,

where

(5) T (x) = {d ∈ Rn : a�
j d ≤ 0 ∀ j ∈ J(x)}

is the cone of feasible directions with respect to the linear inequality constraints.
The first assumption is needed to guarantee that the penalty function has compact

level sets while the second one guarantees that the feasible region of problem (1) is
not empty with a nonempty interior.

As concerns problem (1), the presence of the linear inequality constraints allows
us to define necessary optimality conditions under somewhat weaker assumptions than
usual. In particular, under Assumption 2 it is possible to state the following (KKT)
necessary conditions for local optimality of problem (1).

Proposition 1. Let x̄ ∈ F be a local solution of problem (1). Then,

(6)

∇f(x̄) +∇g(x̄)λ̄ + A�μ̄ = 0,

λ̄�g(x̄) = 0, λ̄ ≥ 0,

μ̄�(Ax− b) = 0, μ̄ ≥ 0,

for some vectors λ̄ ∈ Rm and μ̄ ∈ Rp.
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Proof. The proof follows by considering Propositions 3.3.11 and 3.3.12 in [5] along
with the Motzkin theorem of the alternative [23].

As regards problem (4), we recall that the directional derivative DZ(x, d; ε) of
Z(x; ε) at x ∈ Sα along direction d ∈ Rn exists and is given by (see, for instance, [4])

DZ (x, d; ε) = ∇f(x)�d +
1
ε

max
i∈B(x;ε)

{∇ĝi(x; ε)�d
}

,

where

B(x; ε) =
{

i ∈ {0, 1, . . . , m} : ĝi(x; ε) = max
j=0,1,...,m

{ĝj(x; ε)}
}

and

∇ĝi(x; ε) =
(

1 +
εαi

(αi − gi(x))2

)
∇gi(x), i = 1, . . . , m.

Therefore, the usual definition of stationarity for problem (4) can be given as
follows.

Definition 1. A point x̄ ∈ Sα is a stationary point of problem (4) if

DZ(x̄, d; ε) ≥ 0 ∀ d ∈ T (x̄).

By exploiting the particular structure of problem (4), that is, the expression of
the penalty function Z(x; ε), it is possible to state a different characterization of its
stationary points.

Proposition 2. For any given ε > 0, a point x̄ ∈ Sα is a stationary point of
problem (4) if and only if for each i ∈ B(x̄; ε) there exists λi satisfying

(7) λi ≥ 0,
∑

i∈B(x̄;ε)

λi = 1,

(8)

⎛
⎝∇f(x̄) +

1
ε

∑
i∈B(x̄;ε)

λi∇ĝi(x̄; ε)

⎞
⎠

�

d ≥ 0 ∀ d ∈ T (x̄).

Proof. First let us assume that x̄ ∈ Sα is a stationary point of problem (4). Then
(7) and (8) follows by considering Propositions 3.3.10 and 3.3.11 of [5].

On the contrary, let x̄ ∈ Sα be a point which satisfies conditions (7) and (8); then
we can write

0 ≤
⎛
⎝∇f(x̄) +

1
ε

∑
i∈B(x̄;ε)

λi∇ĝi(x̄; ε)

⎞
⎠

�

d

≤
⎛
⎝∇f(x̄)�d +

1
ε

max
i∈B(x̄;ε)

{∇ĝi(x̄; ε)�d}
∑

i∈B(x̄;ε)

λi

⎞
⎠

=
(
∇f(x̄)�d +

1
ε

max
i∈B(x̄;ε)

{∇ĝi(x̄; ε)�d}
)

for all d ∈ T (x̄), which shows that x̄ is a stationary point of problem (4).
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2.2. Exactness properties. The exactness properties of the penalty function
Z(x; ε) heavily hinge on the following lemma, which is a slight modification of Theorem
2.2 of [13].

Lemma 1. Let x̂ ∈ {x ∈ Rn : Ax ≤ b}. Then, an open neighborhood B(x̂; ρ) of
x̂ and a direction d ∈ T (x̂) exist such that, for all i ∈ Iπ(x̂), we have

∇gi(x)�d ≤ −1 ∀ x ∈ B(x̂; ρ) ∩ {x ∈ Rn : Ax ≤ b},(9)
∇ĝi(x; ε)�d ≤ −1 ∀ x ∈ B(x̂; ρ) ∩ Sα, ∀ ε > 0.(10)

Proof. By Assumption 2, a vector ẑ ∈ T (x̂) exists such that ∇gi(x̂)�ẑ < 0 for all
i ∈ Iπ(x̂). Hence, by continuity, a ρ > 0 exists such that

∇gi(x)�ẑ ≤ −γ/2

for all x ∈ B(x̂; ρ) ∩ {x ∈ Rn : Ax ≤ b} and i ∈ Iπ(x̂), where

−γ = max
i∈Iπ(x̂)

{∇gi(x̂)�ẑ} < 0.

Thus (9) follows by choosing d = 2ẑ/γ.
For x ∈ B(x̂; ρ) ∩ Sα we can write

∇gi(x)�d =
(αi − gi(x))2

(αi − gi(x))2 + εαi
∇ĝi(x; ε)�d ≤ −1 ∀ i ∈ Iπ(x̂),

so that, considering

(αi − gi(x))2 + εαi
(αi − gi(x))2

> 1 ∀ i ∈ Iπ(x̂), ∀ ε > 0

we have

(11) ∇ĝi(x; ε)�d ≤ −1 ∀ i ∈ Iπ(x̂), ∀ ε > 0

which proves (10).
The analysis of the exactness properties of Z(x; ε) follows the same reasonings used

in [7] and [9]. For the sake of clarity, here we report only the statement of the main
results and refer the interested reader to the appendix for a thorough development
and analysis of the exactness properties.

The following propositions establish a connection between stationary points of
the exact penalty function Z(x; ε) which are feasible and KKT pairs of problem (1).

Proposition 3. Let x̄ ∈ F . Then, for any ε > 0, if x̄ is a critical point of
Z(x; ε), there exist multipliers λ̄ ∈ Rm and μ̄ ∈ Rp such that (x̄, λ̄, μ̄) is a KKT triple
for problem (1).

For sufficiently small values of the penalty parameter ε, a one-to-one correspon-
dence between KKT pairs of problem (1) and critical points of the penalty function
Z(x; ε) exist.

Proposition 4. There exists an ε� > 0 such that, for all ε ∈ (0, ε�], if x̄ ∈ Sα
is a critical point of Z(x; ε), there exist multipliers λ̄ ∈ Rm and μ̄ ∈ Rp such that
(x̄, λ̄, μ̄) is a KKT triple for problem (1) and conversely.

Finally, the last proposition describes a connection between local and global min-
imum points of the penalty function and problem (1).

Proposition 5. There exists an ε� > 0 such that, for all ε ∈ (0, ε�],
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(a) if xε ∈ Sα is a (strict) local unconstrained minimum point of Z(x; ε), then xε
is a (strict) local constrained minimum point of problem (1);

(b) if x� ∈ Sα is a global unconstrained minimum point of Z(x; ε) on Sα, then x�

is a global solution to problem (1) and conversely.

3. Smooth approximation and preliminary results. In this section we con-
centrate on the derivative-free approach to the solution of problem (1). As already
argued, in order to solve this problem we resort to a reformulation of problem (1) by
means of the exact penalty function Z(x; ε), so that, on the basis of the exactness
properties studied in the preceding section, we can concentrate on the solution of the
linearly constrained problem (4).

To tackle the nondifferentiability of function Z(x; ε), we adopt a smoothing tech-
nique [4, 31] which consists of solving a sequence of smooth problems approximating
the nonsmooth one in the limit. Let μ > 0 be a smoothing parameter, and define

Z(x; μ, ε) = f(x)+μ ln

(
m∑
i=0

exp
(

ĝi(x; ε)
με

))
= f(x)+μ ln

(
1 +

m∑
i=1

exp
(

ĝi(x; ε)
με

))
.

We report some properties of Z(x; μ, ε) [31] that exploit the fact that ∇ĝ0(x; ε) =
0.

Proposition 6.

(i) For any given x ∈ Rn and ε > 0, Z(x; μ, ε) is increasing with respect to μ and

(12) Z(x; ε) ≤ Z(x; μ, ε) ≤ Z(x; ε) + μ ln m.

(ii) Z(x; μ, ε) is twice continuously differentiable for all μ > 0, ε > 0, and

∇xZ(x; μ, ε) = ∇f(x) +
1
ε

m∑
i=0

λi(x; μ, ε)∇ĝi(x; ε)

= ∇f(x) +
1
ε

m∑
i=1

λi(x; μ, ε)∇ĝi(x; ε),(13)

∇2
xZ(x; μ, ε) = ∇2f(x) +

1
ε

m∑
i=1

(
λi(x; μ, ε)∇2ĝi(x; ε)

)

+
1

με2

m∑
i=1

(
λi(x; μ, ε)∇ĝi(x; ε)∇ĝi(x; ε)�

)
(14)

− 1
με2

(
m∑
i=1

λi(x; μ, ε)∇ĝi(x; ε)

)(
m∑
i=1

λi(x; μ, ε)∇ĝi(x; ε)

)�
,

where

(15) λi(x; μ, ε) =
exp

(
ĝi(x; ε)

με

)

1 +
m∑
j=1

exp
(

ĝj(x; ε)
με

) ∈ (0, 1), i = 0, 1, . . . , m,

and
∑m

i=0 λi(x; μ, ε) = 1.
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Thus, having introduced the smoothing function Z(x; μ, ε), we consider the fol-
lowing smooth approximating problem:

(16) min
x∈Sα

Z(x; μ, ε),

where the approximating parameter μ and the penalty parameter ε will be adaptively
reduced during the optimization process.

Considering problem (16), it is important to study the connections that Z(x; μ, ε)
has with the original constrained problem. In particular, Z(x; μ, ε) should be able,
when minimized, to drive the algorithm away from infeasible points with respect
to the nonlinear inequality constraints. Indeed, the following proposition states an
important result needed to prove convergence of the algorithm. Namely, on every
x̂ ∈ Sα a sufficiently small neighborhood of x̂ exists such that in every infeasible point
belonging to this neighborhood a direction d ∈ T (x̂) exists such that the directional
derivative of the smooth approximating function along direction d is negative and
uniformly bounded away from zero, for ε sufficiently small.

Proposition 7. Let x̂ ∈ Sα and μMAX > 0 be any given scalar. Then, ε(x̂) > 0
and σ(x̂) > 0 exist such that for all x ∈ B(x̂; σ(x̂)) ∩ Sα and satisfying g(x) 
≤ 0, and
for all ε ∈ (0, ε(x̂)] a direction d ∈ T (x̂) exists such that

∇Z(x; μ, ε)�d ≤ − 1
2ε(m + 1)

for all μ ∈ (0, μMAX ].
Proof. Let B(x̂; ρ) and d be the neighborhood and the direction considered in

Lemma 1. By continuity, we can find a neighborhood B(x̂; σ(x̂)) ⊆ B(x̂; ρ) such that
for i 
∈ Iπ(x̂) and x ∈ B(x̂; σ(x̂)), we have gi(x) < 0; it follows that Iπ(x) ⊆ Iπ(x̂) and
Iν(x̂) ⊆ Iν(x) for x ∈ B(x̂; σ(x̂)).

Now let x ∈ B(x̂; σ(x̂)) ∩ Sα be an infeasible point with respect to the nonlinear
inequality constraints. Then, there must exist at least an index i ∈ Iπ(x) such that
gi(x) > 0, which implies Iπ(x) 
= φ. By recalling expression (13), we can write

∇Z(x; μ, ε)�d = ∇f(x)�d

+
1
ε

⎛
⎝ ∑
i∈Iν (x̂)

λi(x; μ, ε)∇ĝi(x; ε)�d +
∑

i∈Iπ(x̂)

λi(x; μ, ε)∇ĝi(x; ε)�d

⎞
⎠ .

By Lemma 1 we have that ∇ĝi(x; ε)�d ≤ −1, i ∈ Iπ(x̂), so that we can write

∇Z(x; μ, ε)�d ≤ ∇f(x)�d(17)

+
1
ε

⎛
⎝ ∑
i∈Iν (x̂)

λi(x; μ, ε)∇ĝi(x; ε)�d−
∑

i∈Iπ(x̂)

λi(x; μ, ε)

⎞
⎠ .

Let ı̄ ∈ Iπ(x̂) be an index such that ĝı̄(x; ε) = maxi∈Iπ(x̂){ĝi(x; ε)}. It is easily
seen that

∑
i∈Iπ(x̂) λi(x; μ, ε) ≥ λı̄(x; μ, ε), and, since

exp(ĝi(x; ε)/με)
exp(ĝı̄(x; ε)/με)

≤ 1 ∀ i ∈ {1, . . . , m},
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then

λı̄(x; μ, ε) ≥ 1

1 + 1 +
m∑

i=1,i�=ı̄

exp(ĝi(x; ε)/με)
exp(ĝı̄(x; ε)/με)

≥ 1
1 + m

.

Hence we get

(18)
∑

i∈Iπ(x̂)

λi(x; μ, ε) ≥ 1/(1 + m).

By considering (17) and (18), we get

∇Z(x; μ, ε)�d ≤ ∇f(x)�d(19)

+
1
ε

⎛
⎝ ∑
i∈Iν(x̂)

λi(x; μ, ε)∇ĝi(x; ε)�d− 1
1 + m

⎞
⎠ .

Now, since Iν(x̂) ⊆ Iν(x), for x ∈ B(x̂; σ(x̂)), by expression (15), it follows that,
for any given μ > 0 and x ∈ B(x̂; σ(x̂)) ∩ Sα not feasible,

lim
ε→0+

λi(x; μ, ε) = 0, i ∈ Iν(x̂).

Hence, by the boundedness of ∇ĝi(x; ε)�d and ∇f(x)�d, an ε(x̂) > 0 exists such
that for all ε ∈ (0, ε(x̂)] we have

∑
i∈Iν(x̂)

λi(x; μ, ε)∇ĝi(x; ε)�d <
1

4(m + 1)
∀ μ ∈ (0, μMAX ](20)

∇f(x)�d <
1

4ε(m + 1)
.(21)

The result follows from (20), (21), and (19).
In order to guarantee the global convergence of the algorithm in the case where

first derivatives are unavailable, it is necessary to get alternative information by sam-
pling the objective function along a suitable set of search directions. Specifically, we
follow the approach proposed in [22], which uses a set of search directions that posi-
tively span a “ν-approximation” of the cone of feasible directions; or in other words,
the cone of feasible directions with respect to the ν-active linear constraints.

Formally, for any ν > 0 and x ∈ Sα, we define the set of indices of ν-active linear
constraints by

J(x; ν) = {j : a�
j x ≥ bj − ν},

and the ν-approximation of the cone of feasible directions by

T (x; ν) = {d ∈ Rn : a�
j d ≤ 0 ∀j ∈ J(x; ν)}.

The following proposition (see [22]) describes some properties of sets J(x; ν) and
T (x; ν).
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Proposition 8. Let {xk} be a sequence of iterates converging towards a point
x̄ ∈ Sα. Then, there exists a value ν∗ > 0 (depending on x̄ only) such that for every
ν ∈ (0, ν∗] there exists k̄ν such that

J(xk; ν) = J(x̄),(22)
T (xk; ν) = T (x̄)(23)

for all k ≥ k̄ν .
Proof. See the proof of Proposition 1 in [22].
The first step toward defining a derivative-free method for the solution of problem

(16) is to associate a suitable set of search directions with each point xk produced by
the algorithm. This set should have the property that the local behavior of the objec-
tive function in each direction in the set provides sufficient information to overcome
the lack of the gradient. Formally, we introduce the following assumption.

Assumption 3. Let {xk} be sequence of points belonging to Sα, {rk} a sequence
of positive scalars, and {Dk} a sequence of sets of search directions defined as

Dk = {pik : ‖pik‖ = 1, i = 1, . . . , rk} ∀ k.

Then, for some constant ν̄ > 0,

cone{Dk ∩ T (xk; ν)} = T (xk; ν) ∀ν ∈ [0, ν̄].

Moreover,
⋃∞
k=0 Dk is a finite set and rk is bounded.

Assumption 3 is quite a standard assumption in a derivative-free context and is
needed to guarantee that the search directions are well defined and able to capture
sufficiently well the local geometry of the feasible set. An example on how to compute
a set of directions satisfying the above assumption can be found in the paper [19].

The proposition which follows is essential to prove convergence of the proposed
algorithm to a KKT point. In particular, it points out the minimal requirements
on the sampling of the smoothed penalty function Z(x; μ, ε) along the directions pik,
i = 1, . . . , rk, and on the updating of both the smoothing parameter μ and penalty
parameter ε which are able to guarantee that feasibility of problem (1) is attained in
a finite number of steps.

Proposition 9. Let {μk} be a sequence of smoothing parameters and {εk} a
sequence of penalty parameters. Let {xk} be a sequence of points and x̄ be a limit
point of a subsequence {xk}K, for some infinite set K ⊆ {0, 1, . . .}, such that x̄ ∈ Sα.
Let {Dk}, with Dk = {p1

k, . . . , p
rk

k }, be a sequence of sets of directions which satisfy
Assumption 3 and Jk = {i ∈ {1, . . . , rk} : pik ∈ T (xk; ν)} with ν ∈ (0, min{ν̄, ν�}],
where ν� and ν̄ are defined in Proposition 8 and Assumption 3, respectively. Suppose
that the following conditions hold:

(i) for each k ∈ K and i ∈ Jk, there exist yik and scalars ξik > 0 such that

(24) yik + ξikp
i
k ∈ Sα, Z(yik + ξikp

i
k; μk, εk) ≥ Z(yik; μk, εk)− o(ξik);

(ii) and, furthermore, {μk}K is a bounded sequence and

(25) lim
k→∞,k∈K

εk = 0, lim
k→∞,k∈K

maxi∈Jk
{ξik, ‖xk − yik‖}
μkεk

= 0.
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It results that a k̄ ≥ 0 exists such that, for all k ∈ K and k satisfying k ≥ k̄, xk is
feasible for problem (1).

Proof. As a first step, we show that for every bounded sequence {dk} ⊂ T (xk; ν)
of directions, an infinite set K̄ ⊆ K exists such that

lim
k→∞,k∈K̄

εk∇Z(xk; μk, εk)�dk ≥ 0.

By assumption the limit point x̄ belongs to Sα, thus an open neighborhood B(x̄)
of x̄ exists which is strictly contained within Sα. Therefore, by points (i) and (ii), we
have that, for k ∈ K sufficiently large and for all i ∈ Jk, xk, yik, and yik + ξikp

i
k belong

to B(x̄).
By applying the mean-value theorem to (24), we can write

(26) −o(ξik) ≤ Z(yik+ ξikp
i
k; μk, εk)−Z(yik; μkεk) = ξik∇Z(uik; μk, εk)

�pik, i ∈ Jk,

where uik = yik+ tikξ
i
kp
i
k, with tik ∈ (0, 1). By using the mean-value theorem again and

the Cauchy–Schwarz inequality, we can write

ξik∇Z(uik; μk, εk)
�pik = ξik∇Z(xk; μk, εk)�pik + ξik(u

i
k − xk)�∇2Z(ũik; μk, εk)p

i
k

≤ ξik∇Z(xk; μk, εk)�pik + ξik‖uik − xk‖‖∇2Z(ũik; μk, εk)p
i
k‖,

where ũik = xk + t̃ik(u
i
k − xk), with t̃ik ∈ (0, 1). By considering expression (14) of

∇2Z(ũik; μk, εk) and the triangle inequality, we get that

ξik∇Z(uik; μk, εk)
�pik ≤ ξik∇Z(xk; μk, εk)�pik

+ξik‖uik − xk‖
⎧⎨
⎩∥∥∇2f(ũik)p

i
k

∥∥+
1
εk

∥∥∥∥∥∥
m∑
j=1

λj(ũik; μk, εk)∇2ĝj(ũik; εk)p
i
k

∥∥∥∥∥∥
+

1
μkε2k

∥∥∥∥∥∥
m∑
j=1

λj(ũik; μk, εk)∇ĝj(ũik; εk)∇ĝj(ũik; εk)
�pik −

⎛
⎝ m∑
j=1

λj(ũik; μk, εk)∇ĝj(ũik; εk)

⎞
⎠

·
⎛
⎝ m∑
j=1

λj(ũik; μk, εk)∇ĝj(ũik; εk)

⎞
⎠

�

pik

∥∥∥∥∥∥∥
⎫⎪⎬
⎪⎭ .

Since {xk}K converges, it follows from Assumption 3 and (15) that, for all i
and j, {xk}K , {ũik}, {λj(ũik; μk, εk)}, {pik} are bounded sequences. Therefore, by the
continuity assumption on f(x) and g(x), we can find positive constants c1, c2, and c3

such that
(27)

ξik∇Z(uik; μk, εk)
�pik ≤ ξik∇Z(xk; μk, εk)�pik + ξik

(
c1 +

1
εk

c2 +
1

μkε2k
c3

)
‖uik − xk‖.

By (24), (26), and (27), we obtain

∇Z(xk; μk, εk)�pik +
(

c1 +
1
εk

c2 +
1

μkε2k
c3

)
‖uik − xk‖ ≥ −o(ξik)

ξik
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from which, taking into account (13), we can write⎛
⎝∇f(xk) +

1
εk

m∑
j=1

λj(xk; μk, εk)∇ĝj(xk; εk)

⎞
⎠

�

pik(28)

+
(

c1 +
c2

εk
+

c3

μkε2k

)
‖uik − xk‖ ≥ −o(ξik)

ξik
.

Since uik = yik + tikξ
i
kp
i
k, with tik ∈ (0, 1), and, by Assumption 3, pik, i ∈ Jk, are

bounded, we have that(
c1 +

1
εk

c2 +
1

μkε2k
c3

)
‖uik−xk‖ ≤

(
c1 +

1
εk

c2 +
1

μkε2k
c3

)
(‖yik−xk‖+ξik) ∀i ∈ Jk,

and from (28) we obtain⎛
⎝∇f(xk) +

1
εk

m∑
j=1

λj(xk; μk, εk)∇ĝj(xk; εk)

⎞
⎠

�

pik(29)

+
(

c1 +
c2

εk
+

c3

μkε2k

)
(‖yik − xk‖+ ξik) ≥ −

o(ξik)
ξik

.

Now, let {dk} be the generic and bounded sequence of directions such that {dk} ⊂
T (xk; ν). By Assumption 3 and by Corollary 10.2 of [19], we know that, for every
index k ∈ K̄, βik ≥ 0, i ∈ Jk, and c̄ > 0 exist such that

(30) dk =
∑
i∈Jk

βikp
i
k and |βik| ≤ c̄‖dk‖.

By multiplying (29) by εkβ
i
k, i ∈ Jk, and summing up, we get, for every index

k ∈ K̄, ⎛
⎝εk∇f(xk) +

m∑
j=1

λj(xk; μk, εk)∇ĝj(xk; εk)

⎞
⎠

� ∑
i∈Jk

βikp
i
k(31)

≥ −
∑
i∈Jk

εk

((
c1 +

1
εk

c2 +
1

μkε2k
c3

)
(‖yik − xk‖+ ξik) +

o(ξik)
ξik

)
βik.

Recalling the boundedness of sequences {xk}, {λj(xk; μk, εk)}, j = 1, . . . , m, an
infinite set K̄ ⊆ K exists such that

lim
k → ∞
k ∈ K̄

xk = x̄,(32)

lim
k → ∞
k ∈ K̄

λj(xk; μk, εk) = λ̄j , j = 1, . . . , m.(33)

By Proposition 8, for all k ∈ K̄ sufficiently large, we have that T (xk; ν) = T (x̄),
so that, considering the boundedness of sequence {dk}, a direction d̄ ∈ T (x̄) exists
such that

(34) lim
k → ∞
k ∈ K̄

dk = d̄.
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Furthermore, given the fact that rk is bounded, a finite set J ⊆ {1, 2, . . .} exists
such that, for k ∈ K̄ and sufficiently large, Jk = J .

Now, taking the limit for k → ∞, k ∈ K̄ in (31), and recalling assumption (ii),
the boundedness of βik, and the expression of ∇ĝj(x; ε), we obtain

(35) lim
k→∞,k∈K̄

εk∇Z(xk; μk, εk)�dk =

⎛
⎝ m∑
j=1

λ̄j∇gj(x̄)

⎞
⎠

�

d̄ ≥ 0.

Let us now suppose by contradiction that an infinite set K̂ ⊆ K exists such that
limk→∞,k∈K̂ xk = x̄ and g(xk) 
≤ 0 for all k ∈ K̂. By virtue of Proposition 7, given
the fact that (25) holds and recalling that, by assumption, ν ∈ (0, min{ν̄, ν�}] so that,
by Proposition 8, T (xk; ν) = T (x̄), we have that a k̂ ∈ K̂ and a direction d̂ ∈ T (x̄)
exist such that

εk∇Z(xk; μk, εk)�d̂ ≤ − 1
2(m + 1)

.

By setting dk = d̂, for all k ∈ K̂, the above relation constitutes a contradiction with
(35) thus completing the proof.

4. A derivative-free method and global convergence result. In this sec-
tion we define an algorithm for the solution of problem (1). The main tools are the
nondifferentiable exact penalty function Z(x; ε) defined in section 2 along with its
exactness properties and the smooth approximating function introduced in section
3. Hence, it would be plausible to employ the algorithm proposed in [21]. Roughly
speaking, the latter algorithm inexactly solves a sequence of problems (16) when the
smoothing parameter μ is driven to zero at a suitable rate. The convergence analysis
carried out in [21] guarantees that a subsequence exists which converges towards a
stationary point of problem (4). However, it should be noted that the mentioned re-
sult is unsatisfactory in that a proper value for the penalty parameter ε is not known a
priori (namely, ε should be smaller than the threshold ε� introduced in Propositions 4
and 5). This implies that a stationary point of problem (4) might have no connections
with a solution of problem (1).

In this section, by exploiting Proposition 9, we define a derivative-free algorithm
for problem (1) which hinges on a suitable automatic updating rule of the penalty
parameter that in a finite number of steps is able to find a value below the mentioned
threshold ε�.

The method that we propose uses as a building block the algorithm proposed
in [21]. For the sake of clarity, we report a single iteration of the method therein
proposed and refer to it as iteration mapM.
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Iteration map M(x, μ, α̃0, ε, q1) �→ (x̌, μ̌, α̌0, α̌max)

Data. γ > 0, θ ∈ (0, 1).
Step 1. (Computation of search directions)

Choose a set of directions D = {p1, . . . , pr} satisfying Assumption
3.
Step 2. (Minimization on the cone{D})

Step 2.1. (Initialization)
Set i = 1, yi = x, α̃i = α̃0.

Step 2.2. (Computation of the initial stepsize)
Compute the maximum steplength ᾱi such that A(yi+ᾱipi) ≤ b
and set α̂i = min{ᾱi, α̃i}.

Step 2.3. (Test on the search direction)
If (α̂i > 0 and Z(yi + α̂ipi; μ, ε) < Z(yi; μ, ε)− γ(α̂i)2

and yi + α̂ipi ∈ Sα ), then
compute αi = expansion step(ᾱi, α̂i, yi, pi)
and set α̃i+1 = αi;

otherwise set αi = 0 and α̃i+1 = θα̃i.
Step 2.4. (New point)

Set yi+1 = yi + αipi.
Step 2.5. (Test on the minimization on the cone{D})

If i = r, go to Step 3;
otherwise set i = i + 1 and go to Step 2.2.

Step 3. (Iterate outputs)
Set x̌ = yi+1.
Set α̌0 = α̃i+1 and α̌max = max

i=1,...,r+1
{α̃i}; choose μ̌ =

min{μ, (α̌max)q1}}.
return (x̌, μ̌, α̌0, α̌max).

Therefore the expansion step in Step 2.3 is defined as follows:

Expansion step (ᾱi, α̂i, yi, pi) �→ α
Data. γ > 0, δ ∈ (0, 1).
Step 1. Set α = α̂i.
Step 2. Let α̃ = min{ᾱi, (α/δ)}.
Step 3. If yi + α̃pi 
∈ Sα or α = ᾱi or

Z
(
yi + α̃pi; μ, ε

) ≥ Z(yi; μ, ε)− γ (α̃)2

return α.
Step 4. Set α = α̃ and go to Step 2.

We note that the iteration map M takes, as input arguments, current values for
the iterate x, the smoothing parameter μ, the initial step size α̃0, the penalty pa-
rameter ε, and exponent q1 and returns, as output arguments, the newly computed



16 G. LIUZZI AND S. LUCIDI

iterate x̌, smoothing parameter μ̌, initial stepsize for subsequent calls α̌0, and maxi-
mum stepsize α̌max. For a thorough description of the iteration mapM we refer the
interested reader to [21].

On the basis of the iteration mapM so far described, we can define our derivative-
free method for the solution of problem (1).

Algorithm. DeFCon
Data. x̃ ∈ Sα, α̃0

0 > 0, ε0 > 0, μmax > 0, γ > 0, δ ∈ (0, 1), θ ∈ (0, 1),
0 < q1 < q2 < 1, and τ ∈ (0, 1).
Step 0. Set μ0 = μmax , x0 = x̃, j = 0, and ε = εj .
Step 1. Set k = 0.
Step 2. (Main iteration)

Compute M(xk, μk, α̃0
k, ε, q1) �→ (xk+1, μk+1, α̃

0
k+1, α̃

max
k+1 ).

Set k = k + 1.
Step 3. (Penalty parameter testing)

If
(α̃maxk )q2

μk
< min{ε, max{0, g1(xk), . . . , gm(xk)}}, then set ε =

τ
(α̃maxk )q2

μk
.

If Z(x̃; μk, ε) ≤ Z(xk; μk, ε), then set x0 = x̃ else x0 = xk.
Set εj+1 = ε, j = j + 1, μ0 = μk and go to Step 1.

Else go to Step 2.

As mentioned earlier in this section, the crucial aspect of Algorithm DeFCon
resides in Step 3, that is, in the penalty parameter testing and updating formula.

We remark that the requirement that 0 < q1 < q2 < 1 is essential to prove
convergence. In particular, q1 ∈ (0, 1) is required to prove convergence of the method
proposed in [21]; q2 ∈ (0, 1) is needed to prove that the penalty parameter is updated
only a finite number of times. Finally, q1 < q2 is essential to prove that a feasible
point is obtained in the limit by Algorithm DeFCon.

The quantity (α̃maxk )q2 can be viewed as a stationarity measure of the current
iterate with respect to the smoothing function (see [16]). Then, on the basis of
the analysis carried out in [16], we can say that (α̃maxk )q2/μk roughly measures the
stationarity of the current iterate with respect to problem (4). Thus, the rationale
behind the penalty parameter updating is to decrease ε whenever an improvement of
the quality of the solution of problem (4) does not correspond to a reduction of the
infeasibility of the current iterate with respect to problem (1). Note, in particular,
that if xk is feasible with respect to the nonlinear inequality constraints, then the
penalty parameter is left unchanged.

The following proposition is an important result in that it guarantees that the
penalty parameter ε is reduced finitely many times.

Proposition 10. Let J = {0, 1, . . .} be the index set generated by Algorithm
DeFCon at Step 3. Then, J is finite.

Proof. Suppose that, each time that the penalty parameter satisfies the condition
tested at Step 3 and before incrementing the counter j, the following quantities are
stored: σmaxj = α̃maxk , σ̃ij = α̃ij , σij = αij for all i = 1, . . . , rk−1 + 1, wij = yik−1 and
dij = pik−1 for all i = 1, . . . , rk−1, and tj = rk−1, zj = xk, ρj = μk. For the sake of
completeness, we set ρ−1 = μmax .
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Reasoning by contradiction, we suppose that J is infinite. By the test of Step 3
of Algorithm DeFCon we have that

(σmaxj )q2

ρj
≤ εj ;

hence

εj+1 = τ
(σmaxj )q2

ρj
≤ τεj

so that we get

(36) lim
j→∞

εj = 0.

Let {zj} be the sequence produced by Algorithm DeFCon. Then, by Assumption
1, an accumulation point z̄ ∈ S̄α exists. Let us relabel {zj} the subsequence which
converges to z̄. Suppose, furthermore, that z̄ ∈ ∂Dα. By the instructions at Step 3 of
Algorithm DeFCon, iteration mapM, and by point (i) of Proposition 6, we get that

(37) Z(zj ; εj) ≤ Z(zj ; ρj , εj) ≤ Z(x(j)
0 ; μ(j)

0 , εj) ≤ Z(x(j)
0 ; ρj−1, εj),

where we denote by {x(j)
k } and {μ(j)

k } the sequences produced by Algorithm DeFCon
when ε = εj .

Furthermore, by the second test at Step 3 of Algorithm DeFCon and by relation
(12), we get

(38) Z(x(j)
0 ; ρj−1, εj) ≤ Z(x̃; ρj−1, εj) ≤ Z(x̃; εj) + ρj−1 ln m.

Hence, by (37) and (38) and multiplying by εj, we obtain

(39) εjZ(zj; εj) ≤ εjZ(x̃; εj) + εjρj−1 ln m.

Since, when j →∞, zj → z̄ ∈ ∂Dα, an index i ∈ {1, . . . , m} must exist such that
gi(zj)→ αi so that ĝi(zj ; εj)→ +∞. Therefore, we get that

(40) lim
j→∞

εjZ(zj; εj) = lim
j→∞

max{0, ĝ1(zj ; εj), . . . , ĝm(zj ; εj)} = +∞.

Noting that, by the expression of ĝi(x; ε), limj→∞ ĝi(x̃; εj) = gi(x̃), i = 1, . . . , m,
we can write that

(41) lim
j→∞

εjZ(x̃; εj) + εjρj−1 ln m = max{0, g1(x̃), . . . , gm(x̃)} < +∞.

Thus, (39), (40), and (41) prove that z̄ cannot be on ∂Dα; therefore z̄ ∈ Sα.
Now, the test and the instructions at Step 3 of Algorithm DeFCon yield that for

every index j,

(42)
(σmaxj )q2

ρj
< min

{
ε, max{0, g1(zj), . . . , gm(zj)}

}
≤ ε = εj,

which, recalling that the sequence {ρj} is bounded above, implies that limj→∞(σmaxj )q2
= 0; hence

(43) lim
j→∞

σmaxj = 0.
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Now we show that limj→∞ wij = z̄ for all i = 1, . . . , tj . To this aim, recalling the
definition of σmaxj and the instructions at Step 2.3 of iteration mapM, we can write

‖wij − zj‖ ≤ tjσ
max
j ∀ i ∈ {1, . . . , tj},

which, by (43) and by the boundedness of tj , by Assumption 3, yield

(44) lim
j→∞

‖wij − zj‖ = 0 ∀ i ∈ {1, . . . , tj}.

Hence, by the fact that zj → z̄, we obtain that

(45) wij → z̄ ∀ i = 1, . . . , tj .

By (45), (43), and the fact that z̄ ∈ Sα, we have that, for sufficiently large values
of j, wij + σ̃ijd

i
j ∈ Sα and wij + σijd

i
j ∈ Sα. We recall that point (ii) of Proposition 6

in [21] holds. Therefore, by the instructions of Step 3 and (44), we obtain that, for
sufficiently large values of j, either

wij +
σij
δ

dij ∈ Sα and Z

(
wij +

σij
δ

dij ; ρj , εj

)
≥ Z(wij ; ρj , εj)− γ

(
σij
δ

)2

or

wij + σ̃ijd
i
j ∈ Sα and Z

(
wij + σ̃ijd

i
j ; ρj , εj

) ≥ Z(wij ; ρj , εj)− γ
(
σ̃ij
)2

are satisfied. Now, setting ξij = σi
j

δ in the first case and ξij = σ̃ij in the second one, we
have, for sufficiently large values of j,

(46) wij + ξijd
i
j ∈ Sα and Z

(
wij + ξijd

i
j ; ρj , εj

) ≥ Z(wij ; ρj , εj)− γ
(
ξij
)2

.

From the updating formula for yi in Step 2.4 of iteration mapM, we note that

(47) ‖wij − zj‖ ≤
i−1∑
l=1

σlj ≤ δ

i−1∑
l=1

ξlj ≤ δtj max
l=1,...,tj

{ξlj},

from which we get that

(48) max
i=1,...,tj

{ξij , ‖zj − wij‖} ≤ max{1, δtj} max
i=1,...,tj

{ξij} ≤ tj max
i=1,...,tj

{σ̃ij , σij}.

From (42), we have that, for every index j,

max
i=1,...,tj

{(σ̃ij)q2 , (σij)q2} = (σmaxj )q2 < ρjεj,

which implies that

(49) (εjρj)1/q2 > σmaxj ,

so that, by (48) and (49), we obtain maxi=1,...,tj{ξij , ‖zj − wij‖} < tj(εjρj)1/q2 , from
which, recalling that 0 < q2 < 1, we get

(50) lim
j→∞

maxi=1,...,tj{ξij , ‖zj − wij‖}
εjρj

= 0.
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By considering (36), (46), and (50), we have that the hypotheses of point (ii) of
Proposition 9 are satisfied so that a j̄ ≥ 0 exists such that, for all j ≥ j̄, zj is feasible
for problem (1).

On the other hand, by the instruction of Step 3 of Algorithm DeFCon, we have
that, for every index j,

(σmaxj )q2

ρj
< max{0, g1(zj), . . . , gm(zj)},

which means that zj ∈ Sα and g(zj) 
≤ 0, for every index j. The latter contradicts
what has just been proved, namely, that zj is feasible for problem (1) for j sufficiently
large, thus completing the proof.

The previous proposition guarantees that, after finitely many times, the test at
Step 3 of Algorithm DeFCon is never satisfied so that the penalty parameter ε stays
fixed at its last value, say εj̄, and {εj}, {zj}, {ρj} are all finite sequences. Therefore,
from now on, we shall assume that ε = εj̄.

The following proposition describes some properties concerning the sequences of
points and of objective function values generated by Algorithm DeFCon and the
sampling technique adopted.

Proposition 11 (see [21]). Let {xk}, {μk} be the sequences generated by Algo-
rithm DeFCon when ε = εj̄. Then

(a) {xk} is well defined;
(b) the sequence {xk} is bounded;
(e) the following limits hold:

lim
k→∞

max
i=1,...,rk

{
αik
}

= 0,(51)

lim
k→∞

max
i=1,...,rk

{
α̃ik
}

= 0,(52)

lim
k→∞

max
i=1,...,rk

∥∥xk − yik
∥∥ = 0.(53)

As shown in [21], by carrying out the convergence analysis, a significant role is
played by the index set K defined as follows:

(54) K = {k : μk+1 < μk}.
Indeed, the following proposition shows that every accumulation point of the

sequence {xk}K is a KKT point for problem (1).
Proposition 12. Let {xk} be the sequence generated by Algorithm DeFCon when

ε = εj̄. Then the sequence {xk} is bounded and every accumulation point x̄ of {xk}K ,
where K is defined by (54), is a KKT point for problem (1).

Proof. First of all we prove that x̄ is feasible for problem (1). Since ε is no longer
updated, from the instruction of Step 3 of Algorithm DeFCon we know that, for every
index k ∈ K,

0 ≤ min {εj̄, max{0, g1(xk+1), . . . , gm(xk+1)}} ≤
(α̃maxk+1 )q2

μk+1
,

and, by the instruction at Step 3 of iterationM,

(α̃maxk+1 )q2

μk+1
= (α̃maxk+1 )q2−q1 ,
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which, taking the limit for k →∞, k ∈ K, recalling the results of Proposition 11, and
the fact that q1 < q2, implies that

(55) lim
k→∞,k∈K

max{0, g1(xk+1), . . . , gm(xk+1)} = 0.

Now let x̄ be an accumulation point of sequence {xk+1}K ; that is, an infinite
index set K̂ ⊆ K exists such that

lim
k→∞,k∈K̂

xk+1 = x̄.

On account of relation (55), we have that

lim
k→∞,k∈K̂

max{0, g1(xk+1), . . . , gm(xk+1)} = 0,

which means that x̄ is such that x̄ ∈ F .
By employing (53) of Proposition 11 and the definition of iteration M, we have

that

lim
k→∞

‖xk − xk+1‖ = 0.

Hence, we know that

lim
k→∞,k∈K̂

xk = lim
k→∞,k∈K̂

xk+1,

so that limk→∞,k∈K̂ xk = x̄ ∈ F .
Finally, we show that x̄ is a KKT point for problem (1). By the instructions of

iteration map M, every point xk ∈ Sα: whose closure is compact by Assumption 1.
Hence, the sequence {xk} is bounded and therefore it admits limit points.

Now let x̄ be any accumulation point of the subsequence {xk}K , where K is
defined by (54). By the first part of the proof, we know that x̄ ∈ F . Furthermore, by
Corollary 1 of [21], we have that x̄ is a stationary point of the exact penalty function
Z(x; ε), so that, by Proposition 3, x̄ is a KKT point for problem (1).

5. Case study: Constrained parameter estimation for glucose kinetics
model. The aim of this paper is mainly theoretical. Thus, the development of an
efficient code based on the proposed algorithm and the analysis of its numerical per-
formance are beyond the scope of the present paper. We refer to [12] for a numerical
experimentation on standard test problems. In [12] an asynchronous parallel generat-
ing set search approach has been used to minimize many different penalty functions.
The influence of the penalty function has been analyzed from a computational point
of view. In particular, Griffin and Kolda employ as penalty functions the nondif-
ferentiable �1, �2, and �∞ plus their smoothed versions s1, s2, and s∞. All of these
penalization techniques are compared against the standard �2

2 differentiable penalty
function. An extensive numerical experimentation is carried out on a large set of test
problems from the CUTEr collection [11]. The conclusion of [12] is that the use of a
smooth approximation s∞ of an �∞ exact penalty function leads to a derivative-free
algorithm which shows a good compromise between quality of the final point and
number of function evaluations required to get convergence.

Encouraged by these results we wanted to understand if the proposed derivative-
free algorithm was able to efficiently solve a real world application. To this aim, we
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used a rough MATLAB implementation of Algorithm DeFCon to solve a problem
connected with the study of an insulin-glucose model of the human body. To solve
the problem we also used the constrained nonlinear minimization MATLAB routine
fmincon and the freely available derivative-free MATLAB package NOMADm [2]. The
latter is a recent implementation of a class of mesh-adaptive direct search (MADS) al-
gorithms for solving nonlinear and mixed variable optimization problems with general
nonlinear constraints. In particular, the employment of fmincon is useful to under-
stand to what extent the unavailability of the derivatives can be overcome by finite
difference approximations. On the other hand, the comparison with the derivative-
free package NOMADm is needed to point out that the proposed algorithm is at least
as efficient as an existing derivative-free code.

The study and understanding of circulatory models of glucose kinetics are of great
importance in medicine and biology. Such models study the response of body tissues
to an impulsive injection of a glucose bolus of known quantity. The intravenous
glucose tolerance test (IVGTT) is a simple and standardized test that allows one to
measure the reaction of the organism to the mentioned impulsive perturbation of the
steady state. IVGTT has a documented ability to assess the functioning of the key
organs involved in glucose homeostasis. Moreover, it is a powerful tool in the study
of diabetes mellitus in that it is able to provide information on beta-cell function and
insulin sensitivity (both peripheral and hepatic).

The IVGTT experimental protocol used prescripts the following operations [27]:
• Collection of 3ml blood basal samples at −30, −15, and 0 min. to glucose

injection.
• Injection of a 300mg/kg glucose bolus at 0 min. immediately after the col-

lection of the last basal sample.
• Infusion, at 20 min. from injection, of 0.03U/kg insulin at a constant rate for

5 minutes.
• Collection of 3ml blood samples at 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 40,

60, 80, 100, 120, 140, 160, 180, 210, and 240 min. from injection of glucose,
for measurements of glucose, glucose tracer, insulin, and C-peptide concen-
trations.

In the circulatory model of glucose kinetics studied in [24, 26, 25], the body tissues
are lumped into two blocks. The heart-lungs block represents the heart chambers
and the lungs, i.e., the tissues in between the right atrium and left ventricle. The
periphery block represents all the remaining tissues, nourished by the entire arterial
tree originating from the left ventricle (including the heart tissues nourished by the
coronaries).

The dynamics of the exogenous arterial glucose concentration during the IVGTT
can be modelled by the following system of ordinary differential equations:

dGA(t)
dt

= −λGA(t) + λ
[
G1(t) + G2(t) + J/F

]
,(56a)

dG1(t)
dt

= −α1G1(t) + α1ϑ
[
1− Eb − γZ(t)

]
GA(t),(56b)

dG2(t)
dt

= −α2G2(t) + α2(1 − ϑ)
[
1− Eb − γZ(t)

]
GA(t),(56c)

dZ(t)
dt

= −βZ(t) + β
[
I(t)− Ib

]
, Z(0) = 0.(56d)
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Here, GA(t) denotes the exogenous arterial glucose concentration, the sum be-
tween G1(t) and G2(t) denotes the mixed-venous glucose concentration, Z(t) denotes
the increment from the basal level of whole-body insulin fractional extraction, I(t) is
the insulin concentration during the exam, J = 300mg/kg is the known intravenous
glucose infusion, F = 2688ml·min−1 ·m−2 is the cardiac output, λ = 3.84 min−1 is
the reciprocal of the mean heart-lungs transit time [17] and is patient-independent,
and Ib is the basal value of insulin concentration and is patient-specific; we used
Ib = 50pmol/l. The numerical solution of the system of ODE (56) requires that the
insulin concentration increment I(t) − Ib in (56d) is available at every time instant.
For this purpose, the measured values of I(t) − Ib have been smoothed and interpo-
lated by a continuous function of time as detailed in [28]. Finally, α1, α2, β, γ, ϑ, Eb
are the model parameters to be estimated in such a way that GA(t) approximates as
well as possible the measurements gathered during the IVGTT. The model parame-
ters, as suggested by biomedical engineers, can be sensibly bounded both from below
and above as follows:

0.5 ≤ α1 ≤ 5, 0.01 ≤ α2 ≤ 0.5, 0.3 ≤ ϑ ≤ 0.9, 0.01 ≤ β ≤ 1,

0.01 ≤ Eb ≤ 0.1, 5 · 10−5 ≤ γ ≤ 5 · 10−4.

Let us define t = (2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 40, 60, 80, 100, 120, 140, 160, 180,
210, 240)�, and let gi denote the exogenous glucose concentration measured at time
ti during the IVGTT. Then

f(α1, α2, β, γ, ϑ, Eb) =
21∑
i=1

(GA(ti)− gi)2

is the sum of squared errors between model prediction and actual measurements.
Moreover, among all the possible models, we are interested in those for which the
mean periphery transit time ϑ/α1 + (1 − ϑ)/α2 is greater than or equal to 2.5 min-
utes. This time limit is necessary to prevent models that are not representative of a
human patient with medium body mass index. Thus, we end up with the following
constrained problem:

(57)

min f(α1, α2, β, γ, ϑ, Eb)
s.t. g(α1, α2, ϑ) = ϑ/α1 + (1 − ϑ)/α2 ≥ 2.5,

0.5 ≤ α1 ≤ 5,
0.01 ≤ α2 ≤ 0.5,
0.3 ≤ ϑ ≤ 0.9,
0.01 ≤ β ≤ 1,
0.01 ≤ Eb ≤ 0.1,
5 · 10−5 ≤ γ ≤ 5 · 10−4.

The circulatory model of glucose has been implemented in MATLAB/Simulink
[29]. The solution of the system of ODE (56), which is at the basis of the model, is
done numerically with a precision ξ that can be set by the user.

We started our experimentation by comparing the outcomes of Algorithm DeF-
Con with that of the constrained nonlinear minimization MATLAB routine fmincon
and of the derivative-free package NOMADm, selecting a precision level of the ODE
solver ξ = 10−3. We ran fmincon and NOMADm by using default values for their
parameters apart from the tolerances in the stopping criterion which we set to 10−6

as for Algorithm DeFCon. Moreover, both fmincon and NOMADm were ran by ap-
propriately specifying the scale of the optimization variables.
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Initial values for the parameters, as suggested by biomedical engineers, are
α1 α2 β γ ϑ Eb

1.0089 0.40794 0.16481 3.932 · 10−4 0.84496 0.020991
In Figure 1 we report the actual measurements of exogenous glucose during IVGTT
as crosses and plot the curve GA(t) obtained in correspondence to the initial values
of the parameters as listed above.
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Fig. 1. Initial configuration.

Starting from this initial point, the proposed derivative-free algorithm (DeFCon),
NOMADm, and the MATLAB routine fmincon yield the results reported in Table 1,
where (n.it.) and (n.f.) denote, respectively, the number of iterations and number

Table 1

Results obtained by Algorithm DeFCon, NOMADm, and fmincon for ξ = 10−3.

DeFCon NOMADm fmincon

n.it. 46 144 12
n.f. 627 480 245
α�

1 2.0228 1.3995 0.80479
α�

2 0.11881 0.081768 0.011788
β� 0.055959 0.010513 1.0
γ� 1.6529 · 10−4 1.4906 · 10−4 5.0 · 10−5

ϑ� 0.7409 0.84496 0.9
E�

b 0.01 0.052241 0.01
f� 2.0959 5.4409 27.6094
g� 2.547 2.5 9.6017
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of functions evaluations. α�1, α
�
2, β

�, γ�, ϑ�, and E�
b represent the final values of the

model parameters to be estimated. Finally, f� and g� represent, respectively, the
final values of the objective function and of the nonlinear constraint (which should be
greater than or equal to 2.5). Looking at the results it can be noted that, even though
all the methods manage to achieve feasibility of the final point, Algorithm DeFCon
and NOMADm are able to produce a point whose objective function value is much
better than that produced by fmincon. Algorithm DeFCon and NOMADm produce
almost the same points. Indeed, the parameter values obtained by Algorithm DeFCon
and NOMADm yield almost the same curves GA(t) even though Algorithm DeFCon
reaches a better objective function value than that achieved by NOMADm, which
converges in fewer function evaluations. As concerns the result computed by fmincon,
it yields a curve GA(t) which is substantially different in terms of approximation of
the glucose measurements (see Figure 2) from that yielded by Algorithm DeFCon
and NOMADm. Comprehensibly, this better behavior of Algorithm DeFCon and
NOMADm over fmincon is achieved at the expense of a higher computational burden
and points out the noisy nature of the approximation problem which is at the basis
of the inefficiency of fmincon.
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Fig. 2. Optimal curves.

The inefficiency of the MATLAB solver fmincon along with the modest number
of iterations and function evaluations to get convergence might indicate that the ODE
solver tolerance is too high for estimation of first order derivatives by finite differences
to be reliable. Hence, we tried to solve the problem with increasing precision levels
for the ODE solver; namely we set the precision ξ = 10−4, 10−5, 10−6 and compared
the results in Table 2.

As concerns the above comparison, we first note that there is only a slight change
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Table 2

Comparison between Algorithm DeFCon, NOMADm, and fmincon.

ξ 10−6 10−5

DeFCon NOMADm fmincon DeFCon NOMADm fmincon

n.it. 97 1211 21 68 1253 9
n.f. 1410 3408 316 994 3542 157

α�
1 2.1468 1.9386 2.2779 2.1659 1.9386 0.58594

α�
2 0.12418 0.11473 0.049484 0.12401 0.11473 0.012527

β� 0.067333 0.046646 0.95153 0.067373 0.046646 1.0

γ� 1.5 · 10−4 1.5 · 10−4 5.0 · 10−5 1.5 · 10−4 1.5 · 10−4 5.0 · 10−5

ϑ� 0.73186 0.75805 0.86005 0.73182 0.75805 0.9

E�
b

0.01 0.020991 0.033761 0.01 0.020991 0.01

f� 2.0061 2.3219 63.7352 2.0075 2.3217 69.183

g� 2.5002 2.5000 3.2058 2.5005 2.5000 9.5193

ξ 10−4

DeFCon NOMADm fmincon

n.it. 57 187 9
n.f. 827 562 146
α�
1 2.1261 1.5948 0.5

α�
2 0.12318 0.091778 0.036089

β� 0.06504 0.015396 0.01
γ� 1.5 · 10−4 1.5 · 10−4 5.0 · 10−4

ϑ� 0.73407 0.81762 0.89948
E�

b
0.01 0.046137 0.01

f� 2.0146 4.1823 103.9875
g� 2.504 2.5001 4.5842

in the points produced by Algorithm DeFCon and NOMADm. Namely, as the ODE
solver precision ξ increases, Algorithm DeFCon and NOMADm, though requiring
more iterations and function evaluations to converge, produce points which are very
close to each other. This is confirmed by the objective and constraint function val-
ues which gain more and more accuracy as the precision ξ becomes finer. However,
Algorithm DeFCon seems to be more efficient than NOMADm when the precision ξ
is less than or equal to 10−5. Slightly better results both for Algorithm DeFCon and
NOMADm can be obtained by performing a tuning of their parameters.

On the contrary, fmincon exhibits a more unpredictable behavior converging to
points that are largely different from each other in terms of parameter, objective, and
constraint function values. The outcomes of fmincon seem to be unrelated to the
precision level of the ODE solver apart for the fact that the computational burden
increases as ξ gets finer. This inefficiency of fmincon is most probably due to the
lack of derivative knowledge on the problem which fmincon tries to overcome by
computing gradients by finite difference approximation. This, in turn, makes fmincon
more subject to the numerical noise introduced by the ODE solver thus explaining
the apparent instability of the code.

6. Conclusions. In this paper we presented a derivative-free algorithm for the
solution of inequality constrained nonlinear programming problems. The method
is based on the derivative-free minimization of a smooth approximation of a new
(nondifferentiable) �∞ exact penalty function. We proved that the method is globally
convergent towards a KKT point of the constrained problem. In order to stress the
ability of our method to tackle real world problems, we reported the results obtained
on a constrained problem concerning the parameter estimation of an insulin-glucose
model of the human body. A comparison with another derivative-free optimization
routine shows the effectiveness of the proposed method.

The convergence properties and the theoretical analysis of the proposed method
has been carried out in the case where only inequality constraints are present. The
method can be adapted to handle both equality and inequality constraints, preserving
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its convergence properties but at the expense of some nontrivial technicalities which
considerably complicate the analysis. Furthermore, we remark that the realization of
an efficient code was not the main aim of this paper. For this reason a fine tuning of
the parameters and an efficient computation of the search directions have not been
done but are the subject of continuing work.

Appendix.
Proof of Proposition 3. Since x̄ ∈ F , then B(x̄; ε) = I0(x̄). Therefore, by Propo-

sition 2, we have⎛
⎝∇f(x̄) +

∑
i∈I0(x̄)

λi((αi − gi(x̄))2 + εαi)
ε(αi − gi(x̄))2

∇gi(x̄)

⎞
⎠

�

d ≥ 0 ∀ d ∈ T (x̄).

Then, by setting λ̄i = λi((αi−gi(x̄))
2+εαi)

ε(αi−gi(x̄))2
, i ∈ I0(x̄), and λ̄i = 0, i ∈ {1, . . . , m} \

I0(x̄), we have that there does not exist any direction d ∈ Rn such that⎛
⎝∇f(x̄) +

∑
i∈I0(x̄)

λ̄i∇gi(x̄)

⎞
⎠

�

d < 0,

a�
j d ≤ 0 ∀j ∈ J(x̄).

Hence, by using the Motzkin theorem [23], we have that y0 > 0 and μj ≥ 0,
j ∈ J(x̄), exist such that

y0

⎛
⎝∇f(x̄) +

∑
i∈I0(x̄)

λ̄i∇gi(x̄)

⎞
⎠+

∑
j∈J(x̄)

ajμj = 0.

The result follows by taking μ̄j = μj/y0 for j ∈ J(x̄), and μ̄j = 0 for j 
∈
J(x̄).

In order to complete the proof of the exactness results of the penalty function
Z(x; ε), we need some technical results which are reported in the following proposi-
tions.

Proposition 13. Let x̂ ∈ Sα; then there exist numbers ε(x̂) > 0 and σ(x̂) > 0
such that, for all ε ∈ (0, ε(x̂)] and for all x ∈ B(x̂, σ(x̂)) ∩ Sα and g(x) 
≤ 0, there
exists a direction d ∈ T (x̂) satisfying DZ(x, d; ε) < 0.

Proof. By Assumption 2, we have that the hypotheses of Lemma 1 are satisfied
at x̂ for I = Iπ(x̂). Let B(x̂, ρ) and d ∈ T (x̂) be the neighborhood and the direction
considered in Lemma 1. We have that d ∈ T (x̂) is such that

(58) ∇ĝi(x; ε)�d ≤ −1

for all i ∈ Iπ(x̂). By continuity, we can find a neighborhood B(x̂, σ(x̂)) ⊆ B(x̂, ρ)
such that, for i 
∈ Iπ(x̂) and x ∈ B(x̂, σ(x̂)) ∩ Sα, we have gi(x) < 0; it follows that
Iπ(x) ⊆ Iπ(x̂) for x ∈ B(x̂, σ(x̂)) ∩ Sα.

Now let x ∈ B(x̂, σ(x̂))∩Sα be an infeasible point, that is, g(x) 
≤ 0. Then, there
must exist at least an index i ∈ Iπ(x̂) such that gi(x) > 0 and ĝi(x; ε) > 0, so that it
results in B(x; ε) ⊆ Iπ(x).

Therefore, recalling the expression of the directional derivative of Z(x; ε) and (58),
we get

DZ(x, d; ε) = ∇f(x)�d +
1
ε

max
i∈B(x;ε)

{∇ĝi(x; ε)�d} ≤ ∇f(x)�d− 1
ε
,
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from which it follows that a value ε(x̂) > 0 exists such that, for all ε ∈ (0, ε(x̂)] and
x ∈ B(x̂, σ(x̂)) ∩ Sα with x 
∈ F , it must hold that

DZ(x, d; ε) < 0,

which concludes the proof.
Proposition 14. Let λ̄ ∈ Rm and μ̄ ∈ Rp be multipliers such that (x̄, λ̄, μ̄) is a

KKT triple for problem (1). Then the following bound holds:

‖λ̄‖q ≤ ∇f(x̄)�z,

where z ∈ T (x̄) is a vector such that

(59) ∇gi(x̄)�z ≤ −1, i ∈ I0(x̄).

Proof. From the fact that (x̄, λ̄, μ̄) is a KKT triple, it follows that, for any z ∈ T (x̄)
satisfying (59), we have

∇f(x̄)�z = −
∑

i∈I0(x̄)
λ̄i∇gi(x̄)�z −

∑
j∈J(x̄)

μ̄ja
�
j z ≥ 0.

Therefore, the following linear program and its dual are both feasible and bounded:

(60)
min
z

∇f(x̄)�z

∇gi(x̄)�z ≤ −1, i ∈ I0(x̄),
a�
j z ≤ 0, j ∈ J(x̄),

(61)

max
u,v

∑
i∈I0(x̄)

ui∑
i∈I0(x̄)

∇gi(x̄)ui +
∑

j∈J(x̄)

ajvj = −∇f(x̄),

u, v ≥ 0.

Let z� and (u�, v�) be optimal solutions of (60) and (61), respectively. Recalling
that every KKT multipliers (λ, μ) of problem (1) satisfy the constraints of problem
(61), we then have

‖λ̄‖q ≤ ‖λ̄‖1 ≤
∑

i∈I0(x̄)

u�i = ∇f(x̄)�z� ≤ ∇f(x̄)�z

for any z ∈ T (x̄) satisfying (59).
Proposition 15 (see [7, Proposition 8]). A number Λ exists such that ‖λ̄‖∞ ≤ Λ

for all KKT triples (x̄, λ̄, μ̄) of problem (1).
Proof. The proof follows using Proposition 14 and the same reasoning of Propo-

sition 8 in [7].
Now, we can finally prove Propositions 4 and 5.
Proof of Proposition 4.
“If”-part: it follows from Proposition 10 in [9].
“Only if”-part: as (x̄, λ̄, μ̄) is a KKT triple for problem (1) we can write

(62) ∇f(x̄) = −
⎛
⎝ ∑
i∈I0(x̄)

λ̄i∇gi(x̄) +
∑

j∈J(x̄)

μ̄jaj

⎞
⎠ .
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Recalling that x̄ ∈ F and that, by definition, ĝ0(x; ε) = 0, so that B(x̄; ε) =
I0(x̄) ∪ {0}, the directional derivative of Z(x; ε) along direction d can be written as
follows:

DZ(x, d; ε) = ∇f(x)�d +
1
ε

max
i∈B(x;ε)

{∇ĝi(x; ε)�d}

= ∇f(x̄)�d +
1
ε

max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}}.

By using (62) in the above expression we get

DZ(x̄, d; ε) =
1
ε

max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}} −
⎛
⎝ ∑
i∈I0(x̄)

λ̄i∇gi(x̄)�d +
∑

j∈J(x̄)

μ̄ja
�
j d

⎞
⎠

≥ 1
ε

max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}} −
⎛
⎝ ∑
i∈I0(x̄)

λ̄i max{∇gi(x̄)�d, 0}+
∑

j∈J(x̄)

μ̄ja
�
j d

⎞
⎠ .

Whenever d ∈ T (x̄), by definition of T (x̄), we get

DZ(x̄, d; ε) ≥ 1
ε

max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}} −
∑

i∈I0(x̄)

λ̄i max{∇gi(x̄)�d, 0}.

By considering the expression of ∇ĝi(x; ε), it results, for i ∈ I0(x̄),

∇ĝi(x̄; ε) =
(

1 +
ε

αi

)
∇gi(x̄),

so that we obtain

DZ(x̄, d; ε) ≥ 1
ε

max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}} −
∑

i∈I0(x̄)

λ̄i
αi

αi + ε
max{∇ĝi(x̄; ε)�d, 0}.

Now, recalling Proposition 15, we have that∑
i∈I0(x̄)

λ̄i
αi

αi + ε
max{∇ĝi(x̄; ε)�d, 0} ≤ max

i∈I0(x̄)
{max{∇ĝi(x̄; ε)�d, 0}}

∑
i∈I0(x̄)

λ̄i

≤ max
i∈I0(x̄)

{max{∇ĝi(x̄; ε)�d, 0}}mΛ,

so that we can say that x̄ is a critical point of problem (4) for all ε ∈ (0, ε�], where
ε� = 1/mΛ.

Proof of Proposition 5. The proof follows by considering Propositions 3 and 13
and [8, 9].
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AN ADAPTIVE LINEAR APPROXIMATION ALGORITHM FOR
COPOSITIVE PROGRAMS∗
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Abstract. We study linear optimization problems over the cone of copositive matrices. These
problems appear in nonconvex quadratic and binary optimization; for instance, the maximum clique
problem and other combinatorial problems can be reformulated as such problems. We present new
polyhedral inner and outer approximations of the copositive cone which we show to be exact in the
limit. In contrast to previous approximation schemes, our approximation is not necessarily uniform
for the whole cone but can be guided adaptively through the objective function, yielding a good
approximation in those parts of the cone that are relevant for the optimization and only a coarse
approximation in those parts that are not. Using these approximations, we derive an adaptive linear
approximation algorithm for copositive programs. Numerical experiments show that our algorithm
gives very good results for certain nonconvex quadratic problems.

Key words. copositive cone, copositive programming, quadratic programming, approximation
algorithms

AMS subject classifications. 90C05, 90C20, 15A48, 15A63, 05C69

DOI. 10.1137/070711815

1. Introduction. In this paper we are concerned with the topic of conic formu-
lations and relaxations for binary and quadratic problems. Semidefinite relaxations
have been proposed as a strong method to obtain good bounds for many combinatorial
optimization problems. Quist et al. [21] suggested that one might get tighter relax-
ations by looking at cones other than the semidefinite one. Bomze et al. [3] were the
first to observe that certain combinatorial problems like the maximum clique problem
can equivalently be reformulated as a linear optimization problem over the cone of
so-called completely positive matrices. A matrix A is called completely positive if it
can be decomposed as A = BBT with an entrywise nonnegative matrix B. There is a
large amount of papers on complete positivity in the linear algebra literature (a good
survey is [1]), but the optimization community has only recently become aware of the
connections between the fields.

The completely positive cone C∗ is the dual cone of the cone C of copositive
matrices. Formally, these cones are defined as

C = {A ∈ S : xTAx ≥ 0 for all x ∈ Rn+}
(where S is the set of symmetric n× n matrices), and

C∗ =

{
k∑
i=1

viv
T
i : vi ∈ Rn+ for all i = 1, . . . , k

}
.

Both C and C∗ are closed, convex, pointed, full dimensional, nonpolyhedral cones. It
can be shown that the interior of C is the set of strictly copositive matrices: int(C) =
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{A ∈ S : xTAx > 0 for all x ∈ Rn+ \ {0}}. The interior of C∗ has recently been
characterized in [10]. The extremal rays of C∗ are known to be the rank one matrices
vvT with v ≥ 0, while characterizing the extremal copositive matrices is an open
problem. Both cones are related to the cones N of nonnegative symmetric matrices
and S+ of symmetric positive semidefinite matrices, since

C ⊇ S+ +N and C∗ ⊆ S+ ∩ N .

Interestingly, for n× n-matrices of order n ≤ 4, equality holds in the above relations,
whereas for n ≥ 5, both inclusions are strict; see [1]. In contrast to N and S+, the
cones C and C∗ are not tractable: It is known that testing whether a given matrix is
in C is co-NP-complete (cf. [16]). Consequently, restating a problem as an optimiza-
tion problem over one of these cones does not resolve the difficulty of that problem.
However, we believe that getting a good understanding of the conic formulations will
help to improve the solution strategies for both binary and nonconvex quadratic prob-
lems. Moreover, in some cases copositive formulations motivate stronger semidefinite
relaxations.

Up to now, the list of problems known to have representations as completely
positive programs has grown to include standard quadratic problems [3], the stable set
problem [15, 9], the quadratic assignment problem [20], and certain graph-partitioning
problems [19]. Burer [6] showed the very general result that every quadratic problem
with linear and binary constraints can be rewritten as such a problem. More precisely,
he showed that a quadratic binary problem of the form

min xTQx + 2cTx

s. t. aTi x = bi, i = 1, . . . , m,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B,

(with Q not necessarily positive semidefinite) can equivalently be written as the fol-
lowing linear problem over the cone of completely positive matrices:

min 〈Q, X〉+ 2cTx

s. t. aTi x = bi, i = 1, . . . , m,

〈aiaTi , X〉 = b2
i , i = 1, . . . , m,

xj = Xjj , j ∈ B,(
1 x
x X

)
∈ C∗.

This means that any nonconvex quadratic integer problem can equivalently be written
as a linear problem over a convex cone, i.e., a convex optimization problem which has
no nonglobal local optima. It is an open question whether problems with general
quadratic constraints can similarly be restated as completely positive problems.

In this paper we develop an algorithm to solve the dual problem, i.e., the opti-
mization problem over the copositive cone which can be stated in the form

(CP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ C
with C, Ai ∈ Rn×n, bi ∈ R.
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Our approach is based on new polyhedral inner and outer approximations of the
copositive cone which we show to be exact in the limit. In contrast to previous ap-
proximation schemes, our approximation is not necessarily uniform for the whole cone
but can be guided adaptively through the objective function, yielding a good approx-
imation in those parts of the cone that are relevant for the optimization and only a
coarse approximation in those parts that are not. Using these approximations, we
derive an adaptive linear approximation algorithm for copositive programs. We show
that our algorithm gives very good results for certain nonconvex quadratic problems.

Note that (CP) is related to the problem of testing whether a given matrix is
in C∗: From the fact that the cone C is the dual of C∗ we have

A /∈ C∗ ⇔ ∃X ∈ C : 〈A, X〉 < 0
⇔ ∃X ∈ C : 〈I + E, X〉 = 1, 〈A, X〉 < 0
⇔ min{〈A, X〉 : 〈I + E, X〉 = 1, X ∈ C} < 0.

(Here I denotes the identity and E the all ones matrix, and 〈I + E, X〉 = 1 serves as
a normalization constraint.) This minimization problem is of the form (CP), so an
algorithm to solve (CP) can be used to decide whether or not A ∈ C∗. It is an open
question how a matrix A known to be in C∗ can be factorized into A = BBT , cf. [2]
and [14] for attempts to answer this question.

1.1. Notation. Throughout the paper we use the following notation: The non-
negative orthant is denoted by Rn+, and the unit vectors are denoted by ei. For a given
vector v or matrix M , the relations v ≥ 0 and M ≥ 0 will be understood entrywise.
We write S to denote the cone of symmetric matrices, N = {A ∈ S : A ≥ 0} to
denote the cone of (entrywise) nonnegative matrices, and S+ = {A ∈ S : A � 0} to
denote the cone of positive semidefinite matrices. Dimensions of the cones will always
be obvious from the context and therefore not stated explicitly. As usual, the inner
product in S is defined as 〈A, B〉 := trace(AB).

1.2. Relations to previous work. Since we will compare our algorithm to
existing approaches, we briefly summarize previous work on copositive programming.
Copositivity of a matrix is defined by positivity of a quadratic form, whence previous
approaches have used various conditions which ensure positivity of polynomials.

For a given matrix M ∈ S, consider the polynomial

PM (x) :=
n∑
i=1

n∑
j=1

Mijx
2
i x

2
j .

Clearly, M ∈ C if and only if PM (x) ≥ 0 for all x ∈ Rn. A sufficient condition for
this is that PM (x) has a representation as a sum of squares (sos) of polynomials.
Parrilo [17] showed that PM (x) allows a sum of squares decomposition if and only
if M ∈ S+ + N , yielding again the relation S+ + N ⊆ C. Using similar reasoning,
Parrilo [17] defined the following hierarchy of cones (cf. also [15] and [4]) for r ∈ N:

Kr :=

{
M ∈ S : PM (x)

(
n∑
i=1

x2
i

)r
has an sos decomposition

}
.

Parrilo showed S+ + N = K0 ⊂ K1 ⊂ . . . , and int(C) ⊆ ⋃
r∈N
Kr, so the cones

Kr approximate C from the interior. Since the sos condition can be written as a
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system of linear matrix inequalities (LMIs), optimizing over Kr amounts to solving a
semidefinite program (SDP).

Exploiting a different sufficient condition for nonnegativity of a polynomial, de
Klerk and Pasechnik [15], cf. also Bomze and de Klerk [4], define

Cr :=

{
M ∈ S : PM (x)

(
n∑
i=1

x2
i

)r
has nonnegative coefficients

}
.

de Klerk and Pasechnik showed that N = C0 ⊂ C1 ⊂ . . . , and int(C) ⊆ ⋃r∈N
Cr. Each

of these cones is polyhedral, so optimizing over one of them is solving an LP.
Refining these approaches, Peña et al. [18] derive yet another hierarchy of cones

approximating C. Adopting standard multiindex notation, where for a given multi-
index β ∈ Nn we have |β| := β1 + · · · + βn and xβ := xβ1

1 · · ·xβn
n , they define the

following set of polynomials

Er :=

⎧⎨
⎩

∑
β∈Nn,|β|=r

xβxT (Pβ + Nβ)x : Pβ ∈ S+, Nβ ∈ N
⎫⎬
⎭ .

With this, they define the cones

Qr :=

{
M ∈ S : xTMx

(
n∑
i=1

x2
i

)r
∈ Er

}
.

They show that Cr ⊆ Qr ⊆ Kr for all r ∈ N, with Qr = Kr for r = 0, 1. Similar
to Kr, the condition M ∈ Qr can be rewritten as a system of LMIs. Optimizing over
Qr is therefore again an SDP.

It is a common feature of all these approximation hierarchies that they approx-
imate C uniformly and do not take into account any information provided by the
objective function of the optimization problem. Moreover, in all these approaches the
system of LMIs (resp. linear inequalities) gets large quickly as r increases, meaning
that the dimension of the SDPs increases so quickly that current SDP-solvers can
only solve problems over those cones for small values of r, i.e., r ≤ 3 at most.

In contrast to this, in our approach the approximation of C can be guided through
the objective function in such a way that a fine approximation is reached in those
regions of C which are relevant for the optimization, and little computational effort
goes to approximating those regions of C which are not. The dimension (i.e., the
number of variables) of the linear subproblems in our algorithm is constant, though the
number of constraints grows. Moreover, solving a relaxation of a copositive program
over one of the cones introduced above provides in general just a relaxation and no
information on the quality of the corresponding bound (an exception is [4]). Our
approach works not only with inner approximations of C, but simultaneously with
outer approximations. Therefore, it provides exact information on the approximation
error and the accuracy of the solution.

We are not aware of comparable approximation schemes for the (dual) cone C∗.
A recent attempt to solve optimization problems over C∗ is a descent algorithm by
Jarre et al. [13]. We remark that another recent contribution to the field of copositive
programming is a unified theory of KKT type optimality conditions and duality by
Eichfelder and Jahn [11].
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1.3. Outline of the paper. We start in section 2 by reviewing criteria for
copositivity of a matrix. Based on these criteria, we develop inner and outer polyhe-
dral approximations of C in section 3. With these cones, we state our algorithm for
copositive programs and prove convergence (section 4). In section 5 we discuss how
the algorithm can be fine-tuned and which details make an implementation efficient.
Finally, we present numerical results in section 6.

2. Criteria for copositivity. In this section, we review some conditions for
copositivity that we developed in [5]. These conditions will be the basis for approx-
imations of the copositive cone C which we introduce in the next section. We start
with the following:

Observation. Let ‖ · ‖ denote any norm on Rn. We have
(a) A is copositive ⇔ xTAx ≥ 0 for all x ∈ Rn+ with ‖x‖ = 1,
(b) A is strictly copositive ⇔ xTAx > 0 for all x ∈ Rn+ with ‖x‖ = 1.
If we choose the 1-norm ‖ · ‖1, then the set ΔS := {x ∈ Rn+ : ‖x‖1 = 1} is the

so-called standard simplex. The copositivity property then translates to

xTAx ≥ 0 for all x ∈ ΔS ,

i.e., we search for conditions which ensure that the quadratic polynomial xTAx is
nonnegative over a simplex. A convenient way to describe polynomials with respect
to a simplex is to use barycentric coordinates: Let Δ = conv{v1, . . . , vn} be a simplex
and

x =
n∑
i=1

λivi with 1 =
n∑
i=1

λi.

Then λ1, . . . , λn ∈ R are called the barycentric coordinates of x with respect to Δ.
The representation of the quadratic form in these coordinates reads

xTAx =

(
n∑
i=1

λivi

)T
A

⎛
⎝ n∑
j=1

λjvj

⎞
⎠ =

n∑
i,j=1

vTi Avjλiλj .

The polynomials λ2
1, . . . , λ

2
n and 2λiλj (i �= j) appearing in this representation are

called Bézier–Bernstein polynomials, and the coefficients vTi Avj are the corresponding
Bézier–Bernstein coefficients. Since all λi are nonnegative on Δ, the next lemma is
immediate:

Lemma 2.1. Let Δ = conv{v1, . . . , vn} be a simplex. If vTi Avj ≥ 0 for all
i, j ∈ {1, . . . , n}, then xTAx ≥ 0 for all x ∈ Δ.

If Δ is the standard simplex ΔS = conv{e1, . . . , en}, then this lemma shows that
A is copositive if 0 ≤ eTi Aej = aij for all i, j. This is the well-known property that
any (entrywise) nonnegative matrix is copositive. This condition can be refined by
looking at so-called simplicial partitions of ΔS :

Definition 2.2. Let Δ be a simplex in Rn. A family P = {Δ1, . . . , Δm} of
simplices satisfying

Δ =
m⋃
i=1

Δi and int Δi ∩ int Δj = ∅ for i �= j

is called a simplicial partition of Δ. For convenience, we denote by VP the set of all
vertices of simplices in P, and by EP the set of all edges of simplices in P.
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Simplicial partitions are a useful tool in many branches of applied mathematics.
A good survey on this topic including convergence results is [12].

It is easy to see that a simplicial partition can be generated through the following
“radial” subdivision of Δ = conv{v1, . . . , vn}: let w ∈ Δ \ {v1, . . . , vn}, which is
uniquely represented by

w =
n∑
i=1

λivi, with λi ≥ 0,

n∑
i=1

λi = 1.

For each index i with λi > 0, form the simplex Δi obtained from Δ by replacing
the vertex vi by w, i.e., Δi = conv{v1, . . . , vi−1, w, vi+1, . . . , vn}. The collection of all
those Δi is a simplicial partition of Δ. If w is a point on one of the longest edges
of Δ, the above procedure is called bisection of the simplex along the longest edge.
Generating a nested sequence of subsimplices of Δ through midpoint bisection along
the longest edge has the nice property that this sequence converges to a singleton.
This property is sometimes referred to as “exhaustiveness”. It can be generalized
from midpoint bisection to settings where the bisection point is an almost arbitrary
point on one of the longest edges; see [12] for a detailed discussion.

Using this concept, the following theorem gives sufficient conditions for coposi-
tivity which generalize the aforementioned relation that A is copositive if all aij ≥ 0:

Theorem 2.3. Let A ∈ S, let P be a simplicial partition of ΔS.
(a) If uTAv ≥ 0 for all {u, v} ∈ EP and vTAv ≥ 0 for all v ∈ VP , then A is

copositive.
(b) If uTAv > 0 for all {u, v} ∈ EP and vTAv > 0 for all v ∈ VP , then A is

strictly copositive.
Proof. To show (a), it is sufficient to prove nonnegativity of xTAx for x ∈ ΔS .

So choose an arbitrary x ∈ ΔS . Then x ∈ Δ for some Δ ∈ P . By assumption,
uTAv ≥ 0 for all combinations of vertices of this simplex Δ which, by Lemma 2.1,
implies xTAx ≥ 0. Part (b) is shown analogously.

We define the diameter δ(P) of a partition P to be

δ(P) := max
{u,v}∈EP

‖u− v‖.

Once a partition gets finer and finer, one will eventually capture more and more strictly
copositive matrices. In the limit we get a necessary condition for strict copositivity:

Theorem 2.4. Let A ∈ S be strictly copositive. Then there exists ε = ε(A) > 0
such that for all finite simplicial partitions P of ΔS with δ(P) ≤ ε we have

uTAv > 0 for all {u, v} ∈ EP and vTAv > 0 for all v ∈ VP .

Proof. The detailed proof can be found in [5]. It relies on strict positivity of
the bilinear form xTAy on the diagonal of the compact set ΔS ×ΔS , followed by a
continuity argument.

Observe that the ε in Theorem 2.4 certainly depends on the matrix A, i.e., there
is not a single ε that works uniformly for all strictly copositive A. Indeed, the ε relates
to how “ill-conditioned” A is.

3. Polyhedral approximations. In this section, we present polyhedral inner
and outer approximations of the cone C.
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3.1. Inner approximation of C. We use the sufficient condition of Theorem 2.3
to define inner approximations of C. As before, consider a simplicial partition P =
{Δ1, . . . , Δm} of ΔS , and let VP denote the set of all vertices of simplices in P , and
EP the set of all edges of simplices in P . For a given partition P , define

IP := {A ∈ S : vTAv ≥ 0 for all v ∈ VP ,

uTAv ≥ 0 for all {u, v} ∈ EP}.
Note that given the vertices u,v, an expression of the form uTAv ≥ 0 is a linear
inequality for the entries of A. Therefore, IP is a polyhedral cone.

Obviously, IP depends on the partition P . If P1 and P2 are two simplicial parti-
tions of the same simplex, we call P2 a refinement of P1 if for all Δ ∈ P1 there exists
a subset PΔ ⊆ P2 which is a simplicial partition of Δ.

We have the following properties:
Lemma 3.1. Let P ,P1,P2 denote simplicial partitions of ΔS . Then
(a) IP is a closed convex polyhedral cone,
(b) IP ⊆ C, i.e., IP is an inner approximation of C,
(c) if P2 is a refinement of P1, then IP1 ⊆ IP2 .
Proof. (a) is obvious from the definition. (b) follows from Theorem 2.3. To

prove (c), let A ∈ IP1 , let Δ2 ∈ P2, and let u, v be two arbitrary vertices of Δ2

(possibly equal). We have to show uTAv ≥ 0. Since P2 is a refinement of P1, there
exists a simplex Δ1 ∈ P1 with Δ2 ⊆ Δ1. Therefore, u and v are convex combinations
of the vertices v1, . . . , vn of Δ1, i.e., u =

∑n
i=1 λivi and v =

∑n
i=1 μivi with λi, μi ≥ 0

for all i ∈ {1, . . . , n} and
∑n

i=1 λi = 1 =
∑n
i=1 μi. Since vTi Avj ≥ 0 for all i, j due to

A ∈ IP1 , we have

uTAv =
n∑

i,j=1

λiμjv
T
i Avj ≥ 0.

Therefore, A ∈ IP2 .
Example 3.2. If P = {ΔS}, i.e., the partition consists only of the standard

simplex, then

IP = {A ∈ S : aij ≥ 0 for all i, j = 1, . . . , n} = N ,

i.e., I{ΔS} equals the cone N of nonnegative matrices.
Consider instead the partition P2 = {Δ1, Δ2} which is derived from P by bisecting

the edge {e1, e2} at the midpoint w := 1
2 (e1 + e2). We get Δ1 = conv{w, e2, . . . , en}

and Δ2 = conv{e1, w, e3, . . . , en}. For the definition of IP2 this means that the
inequality eT1 Ae2 ≥ 0 (i.e., a12 ≥ 0) corresponding to the bisected edge is removed
and replaced by a number of new inequalities. More precisely,

IP2 = {A ∈ S : aij ≥ 0 for all {i, j} �= {1, 2},
ai1 + ai2 ≥ 0 for all i = 1, . . . , n,

a11 + 2a12 + a22 ≥ 0}.
This defines a larger cone, i.e., a better approximation to C. Observe that the system
defining IP2 is redundant. This property will cause some difficulty later in the paper,
cf. section 5.2. A reduced representation is

IP2 = {A ∈ S : aij ≥ 0 for all {i, j} �= {1, 2},
a11 + a12 ≥ 0,

a22 + a12 ≥ 0}.
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This is a reduction from n2 + n− 1 to n2 inequalities; i.e., already O(n) inequalities
are redundant after a single bisection step.

The next theorem shows that a sequence of simplicial partitions {P�} yields a
sequence of polyhedral inner approximations {IP�

} that will eventually approximate C
with arbitrary precision, provided that the diameter δ(P) of the simplicial partition
goes to zero.

Theorem 3.3. Let {P�} be a sequence of simplicial partitions of ΔS with δ(P�)→
0. Then we have

int C ⊆
⋃
�∈N

IP�
⊆ C, and consequently C =

⋃
�∈N

IP�
.

Proof. Take A ∈ int C, i.e., A strictly copositive. Then Theorem 2.4 implies
that there exists �0 ∈ N, such that A ∈ IP�0

. Therefore A ∈ ⋃�∈N
IP�

, and hence
int C ⊆ ⋃�∈N

IP�
. From Lemma 3.1, we have IP�

⊆ C for all � ∈ N, so
⋃
�∈N
IP�
⊆ C.

Finally, C =
⋃
�∈N
IP�

since C = int C.
This shows that our approach generates a sequence of approximating polyhedral

cones N = IP0 ⊂ IP1 ⊂ . . . ⊂ C in a similar way as the approaches described in
section 1.2. To compare our approximations to the hierarchy of polyhedral cones Cr
by Bomze and de Klerk [4], observe that C0 = N = I{ΔS}. For C1, it is shown in [4]
that A ∈ C1 if and only if

aii ≥ 0, i ∈ {1, . . . , n},
aii + 2aij ≥ 0, i �= j,

aij + ajk + aki ≥ 0, i < j < k.

To see the difference between the approaches, consider dimension n = 2 for simplicity,
in which case the above system describing C1 reduces to

(3.1) a11 ≥ 0, a22 ≥ 0, a11 + 2a12 ≥ 0, a22 + 2a12 ≥ 0.

Consider the partition P1 = {conv{e1, v}, conv{v, e2}} with v = 1
2 (e1 + e2). The

corresponding system of inequalities for IP1 is then

aii ≥ 0, i ∈ {1, 2},(3.2)
a11 + a12 ≥ 0,(3.3)
a22 + a12 ≥ 0,(3.4)

plus the redundant inequality vTAv ≥ 0. Obviously, system (3.2)–(3.4) is implied
by (3.1), and therefore IP1 ⊇ C1. As the matrix A =

(
1 −1
−1 1

)
fullfills (3.2)–(3.4)

but not (3.1), we have IP1 �= C1. It is easy to see that for v = λe1 + (1 − λ)e2 with
λ ∈ [13 , 2

3 ] we have IP1 � C1, whereas for the other values of λ we get IP1 �⊃ C1. These
arguments extend to higher dimensions, but get much more technical there.

Comparing our approximation with S++N , it is clear that there is no partition P
such that IP ⊃ S+ +N because in dimension n = 2 we have S+ +N = C, while IP
is a polyhedral subset of C. However, depending on the subdivision strategy it is
possible to construct partitions with IP �⊂ S+ +N .

3.2. Outer approximation of C. As before, consider a simplicial partition P
of ΔS , let VP denote the set of all vertices in P , and define

OP := {A ∈ S : vTAv ≥ 0 for all v ∈ VP}.
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It is easy to see that, similar to IP , the set OP is polyhedral, as well. In analogy to
Lemma 3.1, we have the following properties:

Lemma 3.4. Let P ,P1,P2 denote simplicial partitions of ΔS . Then
(a) OP is a closed convex polyhedral cone,
(b) OP ⊇ C, i.e., OP is an outer approximation of C,
(c) if P2 is a refinement of P1, then OP2 ⊆ OP1 .
Proof. (a) is obvious from the definition. (b) If A ∈ C, then xTAx ≥ 0 for all

x ∈ ΔS . Since VP ⊂ ΔS , the statement follows. (c) We have VP1 ⊆ VP2 . Therefore,
the set of inequalities describing OP1 is a subset of the set of inequalities describing
OP2 , and hence OP2 ⊆ OP1 .

Example 3.5. If P consists only of the standard simplex, i.e., P = {ΔS}, then

OP = {A ∈ S : aii ≥ 0 for all i}.
This corresponds to the well-known fact that a copositive matrix necessarily has
nonnegative entries on the diagonal. Observe that O{ΔS} is not pointed.

Performing a midpoint bisection of the edge {e1, e2} gives the new vertex w :=
1
2 (e1 + e2) and the resulting partition P2 yields the set

OP2 = {A ∈ S : aii ≥ 0 for all i, a11 + 2a21 + a22 ≥ 0},
a smaller set and better approximation to C.

The sequence of outer approximations {OP�
} converges to the copositive cone as

the partitions P� get finer.
Theorem 3.6. Let {P�} be a sequence of simplicial partitions of ΔS with δ(P�)→

0. Then we have

C =
⋂
�∈N

OP�
.

Proof. Lemma 3.4(b) implies C ⊆ ⋂�∈N
OP�

. To see the reverse, take A /∈ C. Then
x̄TAx̄ < 0 for some x̄ ∈ ΔS . From continuity it follows that there is an ε-neighborhood
Nε(x̄) of x̄ such that

(3.5) xTAx < 0 for all x ∈ Nε(x̄).

Let P ∈ {P�} be some partition with δ(P) < ε. Then there is a simplex Δ ∈ P with
x̄ ∈ Δ, and hence a vertex v of Δ with ‖x̄− v‖ < ε, so v ∈ Nε(x̄). From (3.5), we see
that vTAv < 0, whence A /∈ OP . Therefore, A /∈ ⋂�∈N

OP�
.

3.3. Approximations of the dual cone C∗. Recall that the dual cone of C
is the cone C∗ of completely positive matrices. By duality, the dual cone of an inner
(resp. outer) approximation of C is an outer (resp. inner) approximation of C∗. Indeed,
it is not difficult to see that for any partition P of ΔS

I∗P =

⎧⎨
⎩

∑
{u,v}∈EP

λuv(uvT + vuT ) +
∑
v∈VP

λvvvT : λuv, λv ∈ R+

⎫⎬
⎭ ⊇ C∗

is an outer approximation of C∗, and

O∗
P =

{∑
v∈VP

λvvvT : λv ∈ R+

}
⊆ C∗
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is an inner approximation of C∗. From Theorems 3.3 and 3.6 we immediately get
that if {P�} is a sequence of simplicial partitions of ΔS with δ(P�) → 0, then the
approximations converge, i.e.,

C∗ =
⋂
�∈N

I∗P�
and C∗ =

⋃
�∈N

O∗
P�

.

4. An adaptive approximation algorithm for copositive programs. We
now turn to the problem of solving an optimization problem over the copositive cone.
The difficulty of such a problem lies in the cone condition. If the copositive cone
is replaced by a linear inner or outer approximation, we get a linear program whose
optimal value is a lower, respectively upper, bound of the optimal value of the original
problem. We first state our algorithm and illustrate its behavior with a small example.
After that, we study convergence of the algorithm.

4.1. Algorithm framework. We state the algorithm for copositive programs
of the form

(CP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ C.
Given a solution accuracy ε > 0, Algorithm 1 computes an ε-optimal solution

of (CP), i.e., a feasible solution X with 〈C,Xopt〉−〈C,X〉
1+|〈C,Xopt〉|+|〈C,X〉| < ε. Note that the algo-

rithm also provides the valid lower (resp. upper) bounds 〈C, XI〉 (resp. 〈C, XO〉).

Algorithm 1 ε-approximation algorithm for (CP).

1: set P = {ΔS}
2: solve the inner LP

(ILP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ IP
let XI denote the solution of this problem

3: solve the outer LP

(OLP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ OP

let XO denote the solution of this problem

4: if 〈C,XO〉−〈C,XI〉
1+|〈C,XO〉|+|〈C,XI〉| < ε, then

5: STOP: XI is an ε-optimal solution of (CP)
6: end if
7: choose Δ ∈ P
8: bisect Δ = Δ1 ∪Δ2

9: set P ← P \ {Δ} ∪ {Δ1, Δ2}
10: go to 2.
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(a) Gap: ∞ (b) Gap: 1.0000 (c) Gap: 0.2143

(d) Gap: 0.0478 (e) Gap: 0.0118 (f) Gap: 0.0030

Fig. 4.1. Iterations for Example 4.1.

In this prototype algorithm it is not specified how a simplex is selected in Step 7
or how the bisection is performed in Step 8. Here lies some freedom which allows us
to guide the partitioning procedure adaptively in a way that is advantageous for the
optimization. The choice of the partitions also influences the convergence behavior
and finiteness of the algorithm.

We will discuss these points later in more detail in section 5. First, we illustrate
the behavior of this algorithm with a small example:

Example 4.1. Consider the problem

max
〈(

0 0
0 1

)
, X

〉

s. t.
〈(

2 1
1 2

)
, X

〉
= 2

X ∈ C.
The sequence of iterations is displayed in Figure 4.1. In this simple example, the

cone C of symmetric copositive matrices is a cone in R3. The feasible set is therefore a
two-dimensional set which is displayed with the curved line in the figure. The upward
arrow indicates the direction of the objective function. The solid line represents the
inner approximating cones IP , whereas the dashed lines represent the outer approxi-
mating cones OP . The symbols × and + indicate the subproblem optimal solutions
(computed by an interior point solver in this example). For the starting partition,
the outer approximation is unbounded, a consequence of the fact that O{ΔS} is not
pointed. “Gap” denotes the difference 〈C, XO〉 − 〈C, XI〉.

Observe that the feasible set is approximated with high accuracy in those parts
which are important for the optimization, whereas the irrelevant parts are not refined.
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4.2. Convergence. We proceed to investigate convergence of Algorithm 1. Con-
vergence of this algorithm relies on convergence of the approximating cones IP�

and OP�
as described in section 3. Therefore, we need the assumption that δ(P�)→ 0

as �→∞ for the partitions generated in the algorithm. Note that by construction of
Algorithm 1 we have the monotonicity IP�

⊂ IP�+1 and OP�+1 ⊂ OP�
.

Further, observe that feasibility of (CP) implies feasibility of (OLP), but not nec-
essarily feasibility of (ILP). Therefore, we need assumptions which imply that (ILP)
will eventually become feasible in the course of the iterations. This is done by assum-
ing that there exists a strictly feasible point by which we mean a solution X̂ of the
linear system 〈Ai, X̂〉 = bi for all i = 1, . . . , m with X̂ ∈ int(C).

Moreover, the feasible set of the outer approximation problem (OLP) may be
unbounded even if the feasible set of (CP) is compact; cf. Example 4.1. The next
theorem shows, however, that in this case the feasible set of the outer approximation
eventually becomes bounded as the algorithm progresses.

Theorem 4.2. Assume the feasible set of (CP) is bounded and contains a strictly
feasible point. Assume further that in every iteration of Algorithm 1 the selection of
Δ and the bisection into Δ = Δ1 ∪Δ2 is performed in such a way that the generated
sequence {P�} of partitions fulfills δ(P�)→ 0 as �→∞. Let (ILPP�

) (resp. (OLPP�
))

denote the inner (resp. outer) approximation LPs corresponding to partition {P�} in
Steps 2 and 3 of Algorithm 1, and let XI� (resp. XO�) denote the optimal solutions
of (ILPP�

) (resp. (OLPP�
)). Then

(a) there exists �0 ∈ N such that the feasible set of (ILPP�
) is nonempty and

bounded for any � ≥ �0; the corresponding optimal solution XI� is then feasible
for (CP);

(b) there exists �1 ∈ N such that the feasible set of (OLPP�
) is nonempty and

bounded for any � ≥ �1;
(c) both sequences {XI�} and {XO�} have accumulation points, and any accu-

mulation point of either sequence is optimal for (CP).
Proof. Let X∗ denote an optimal solution of (CP), and let X̂ be a strictly feasible

solution of (CP). Let A := {X ∈ S : 〈Ai, X〉 = bi for i = 1, . . . , m} denote the
subspace of points satisfying the linear constraints. We use the notation max(P ) to
denote the optimal value of a maximization problem (P ).

(a) Since IP�
⊆ C for any � ∈ N, the feasible sets of (ILPP�

) are all bounded.
As X̂ is a strictly copositive matrix, it follows from Theorem 3.3 that there
exists �0 ∈ N such that X̂ ∈ IP�0

. Since also X̂ ∈ A, the feasible set A∩IP�0

of (ILPP�0
) is nonempty, and so are the feasible sets of (ILPP�

) for all � ≥ �0.
Therefore, any such (ILPP�

) has an optimal solution XI� which, by IP�
⊆ C,

is feasible for (CP).
(b) Since (CP) is feasible, the feasible set A∩OP�

of any (OLPP�
) is nonempty,

as well. To show boundedness, assume by contradiction that A ∩ OP�
is

unbounded for all � ∈ N. Take an arbitrary X ∈ A∩C. Then by polyhedrality
of A∩OP�

, the set

D� := {D ∈ S : ‖D‖ = 1, X + αD ∈ A ∩ OP�
for all α ≥ 0}

is nonempty for any �. The monotonicity OP�
⊇ OP�+1 implies D� ⊇ D�+1

for all �. Moreover, closedness of A ∩ OP�
implies closedness of D�, whence

all D� are compact. Using a theorem of Cantor, we infer that the intersection
of all D� is nonempty, i.e., there exists D̂ ∈ ⋂�∈N

D�. But then {X + αD̂ :
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α ≥ 0} ⊂ A ∩OP�
for all �, and therefore

{X + αD̂ : α ≥ 0} ⊂
⋂
�∈N

(A ∩OP�
) = A∩

⋂
�∈N

OP�
= A ∩ C.

This contradicts the assumption that A ∩ C is bounded, and consequently
there exists �1 ∈ N such that A∩OP�

is bounded for all � ≥ �1.
(c) We first show the statement for the sequence {XI�}. An accumulation point

exists because the sequence {XI�}�≥�0 is contained in the compact feasible
set of (CP). Let Xa denote an accumulation point of {XI�}. From the inner
approximation property, we have 〈C, XI�〉 ≤ max(CP) for all � ≥ �0, so the
same must hold for the accumulation point, i.e.,

(4.1) 〈C, Xa〉 ≤ max(CP).

To see the converse, consider points Zλ := λX∗ + (1 − λ)X̂ for λ ∈ (0, 1).
By construction, Zλ is strictly feasible for (CP), i.e., strictly copositive. By
Theorem 3.3, for each such λ there exists �λ ∈ N such that Zλ ∈ IP�

for all
� ≥ �λ. Therefore,

〈C, Xa〉 = sup
�∈N

max(ILPP�
) ≥ lim

λ↗1
〈C, Zλ〉 = 〈C, X∗〉 = max(CP).

Combined with (4.1), this proves that Xa is optimal for (CP).
Next, we show the statement for the sequence {XO�}. An accumulation point
exists because the sequence {XO�}�≥�1 is contained in the compact feasible
set of (OLPP�1

). Let XA denote an accumulation point of {XO�}. From the
outer approximation property we have 〈C, XO�〉 ≥ max(CP) for all �, so the
same must hold for the accumulation point, i.e.,

〈C, XA〉 ≥ max(CP).

The reverse inequality follows from XA ∈ ⋂�∈N
OP�

= C, which shows that
XA is an optimal solution of (CP).

If the assumptions of Theorem 4.2 are not fulfilled, the situation gets more in-
volved:

If the feasible set of (CP) is empty because A = ∅, then (OLP) is infeasible
in the very first iteration. If the feasible set of (CP) is empty because A does not
intersect C, then obviously all inner approximations (ILPP�

) are infeasible, as well, but
unfortunately infeasibility of (ILP) is no certificate of infeasibility of (CP). Detection
of infeasibility of (CP) is only possible if (OLP) is infeasible. We observed that in
numerical examples, infeasibility of (CP) was detected through infeasibility of an outer
approximation (OLPP�

) in the course of the iterations. In exceptional cases, however,
this may fail: If the set A is parallel to an face of C induced by the hyperplane
H := {X ∈ C : vTXv = 0}, then the outer approximations remain feasible unless the
partitioning process eventually generates v as a vertex in VP by pure chance.

If (CP) is feasible but has no strictly feasible point, i.e., the feasible set is contained
in the boundary of C, then clearly all outer approximations are feasible, but the inner
approximations are most likely all infeasible, unless the inner approximation happens
to touch the boundary of C in the right portion.

If (CP) is unbounded, then in most practical cases the inner approximation will
also be unbounded in some finite iteration. In any case, we have the following:
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Theorem 4.3. Assume that (CP) has a strictly feasible solution. If (CP) is
unbounded, then

lim
�→∞

max(ILPP�
) =∞.

Proof. If (CP) is unbounded, then there exists a sequence {X̃n} of feasible solu-
tions such that limn→∞〈C, X̃n〉 = ∞. Let X̂ be a strictly feasible solution of (CP).
Then Xn := 1

2 X̂ + 1
2X̃n is strictly feasible for all n ∈ N, and

lim
n→∞〈C, Xn〉 =∞.

By Theorem 2.4, for each n ∈ N there exists an index �n such that Xn ∈ IP�n
. Now

the assertion follows.

5. Fine-tuning the algorithm. As mentioned, Algorithm 1 contains freedom
in Steps 7 and 8 where the partitioning process of ΔS is guided. In this section, we
discuss how the partitioning is performed in each iteration. Moreover, we consider the
problem of redundancies appearing in the subproblems, and we show how the starting
partition can be tuned given a known heuristic solution.

5.1. Selecting and subdividing Δ. Generating a sequence of partitions {P�}
of ΔS with δ(P�) → 0 results in a sequence of cones {IP�

} and {OP�
} that approx-

imate C uniformly arbitrarily well. For optimization purposes, however, this is not
efficient. We would rather like to obtain a high approximation accuracy in those parts
of the feasible set which are relevant for the optimization, and we would like to invest
as little computational effort as possible into uninteresting parts. Therefore, we use
information gained through the objective function.

First note that, once an edge {u, v} is chosen for bisection, it makes sense to
partition all simplices containing this edge at the same time. Otherwise, {u, v} would
remain an edge in EP , and the corresponding cone IP would not change. We bisect
all simplices at the new vertex w := λu + (1 − λ)v. Experiments with various values
of λ showed no big effects, whence we simply use λ = 1

2 , i.e., we perform midpoint
bisection throughout.

Furthermore, observe that, when an edge {u, v} ∈ EP is splitted, the correspond-
ing inequality uTXv ≥ 0 is removed from the system describing IP and replaced
by several new inequalities (cf. Example 3.2). All other inequalities present before
the bisection step are also present after bisection. As the optimal value of an LP
does not change if an inactive constraint is removed, it makes sense to consider for
splitting only edges {u, v} ∈ EP corresponding to active constraints, i.e., edges with
uTXIv = 0 (where XI is the solution of (ILP) in Step 2 of the algorithm). Only in
this way can we hope to improve the solution of the inner approximation.

We call an edge {u, v} ∈ EP with uTXIv = 0 an active edge and choose in Step 7
of Algorithm 1, the longest of the edges active in XI for bisection. The next lemma
states that such an edge always exists:

Lemma 5.1. In Step 7 of Algorithm 1, there always exists {u, v} ∈ EP with
uTXIv = 0.

Proof. The proof relies on the fact that the optimal value of an LP does not
change if constraints which are inactive at the solution are omitted. The solution XI

of problem (ILP) clearly fulfills XI ∈ IP , i.e., uTXIv ≥ 0 for all {u, v} ∈ EP and
vTXIv ≥ 0 for all v ∈ VP . Assume by contradiction that all constraints uTXv ≥ 0
with {u, v} ∈ EP are inactive. Then the solution of (ILP) does not change if those
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constraints are omitted. But this means that XI also solves (OLP), whence the
algorithm stops in Step 4 with a zero gap.

Selecting in Step 7 of Algorithm 1 one of the longest active edges may not result
in a sequence of partitions {P�} with δ(P�) → 0. Instead of δ(P�), we now have to
monitor the length α(P�) of the longest active edge in P�. If this quantity goes to
zero, then the algorithm converges:

Theorem 5.2. Assume that (CP) has a strictly feasible point and a bounded
feasible set. Let {P�} be a sequence of simplicial partitions generated from P0 = {ΔS}
by bisecting one of the respective longest active edges {u�, v�}. Assume further that
the length α(P�) of the respective longest edge in P� goes to zero as �→∞. Then

lim
�→∞

max(ILPP�
) = max (CP).

Proof. Convergence Theorem 4.2 cannot be directly applied since we do not
necessarily have δ(P�)→ 0 as �→∞. However, we show that there exists a sequence
{R�} of partitions which fulfills max(ILPP�

) = max(ILPR�
) for all � ∈ N, and δ(R�)→

0 as �→∞.
Consider P� for some � ∈ N, and let X� be the solution of the inner approximation

problem (ILPP�
). Since α(P�) denotes the length of the longest active edge in P�,

edges in P� with length greater than α(P�) are necessarily inactive.
We construct R� from P� by splitting all edges in P� which are longer than α(P�).

If necessary, we repeat this process until no edge of length greater than α(P�) remains.
All edges which are in P� but not inR� were splitted in the process of constructingR�.
Therefore, they had length greater than α(P�) and thus were inactive with respect
to the optimal solution of (ILPP�

). Let (AUX) be the linear program which has the
same constraints as (ILPP�

) except for those induced by an edge from EP�
\ ER�

.
Removing inactive constraints from an LP does not change the optimal value, so
max(ILPP�

) = max(AUX). Adding constraints cannot increase the optimal value, so
max(ILPR�

) ≤ max(AUX) = max(ILPP�
). On the other hand,R� is by construction a

refinement of P�, so we immediately get max(ILPP�
) ≤ max(ILPR�

) from Lemma 3.1.
Consequently, the two values are equal.

Observe that δ(R�) ≤ α(P�). Now the assumption α(P�)→ 0 implies δ(R�)→ 0
as �→∞, so {R�} fulfills the prerequisites of Theorem 4.2, and hence

lim
�→∞

max(ILPP�
) = lim

�→∞
max(ILPR�

) = max (CP),

and the proof is complete.
In practical implementations of our algorithm, it may happen that α(P�) �→ 0 such

that convergence is not guaranteed. However, we never observed nonconvergence in
our test instances (cf. section 6). If convergence does not occur, it may be necessary
to alternate between bisection of the longest edge and bisection of the longest active
edge to maintain convergence.

Observe that Theorem 5.2 ensures convergence of the inner approximations but
not of the outer approximations. Therefore, the adaptive algorithm which splits along
the longest active edges might have a positive gap. In our experiments, this seemed
unproblematic. However, if the outer approximations fail to converge, a remedy is
to use additional points for the outer approximation in such a way that these points
eventually become dense in ΔS .

5.2. Handling redundancies. Given a partition P , the description OP :=
{A ∈ S : vTAv ≥ 0 for all v ∈ VP} does not contain any redundant inequalities.
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v

s

u w

(a) The inequalities induced by

vertex v and edge {s, v} are re-
dundant.

v

s

u w

(b) The inequality induced by

edge {s, v} is redundant.

Fig. 5.1. Two situations where redundancies occur.

This follows from the fact that for any v ∈ VP and H := {X ∈ S : vTXv = 0} the set
H ∩ OP is a facet of OP . Indeed, assume vTXv = 0 does not define a facet of OP .
Then there exist vertices v1, . . . , vs ∈ VP different from v, and α ∈ Rs+ such that

vvT =
s∑
i=1

αiviv
T
i .

But this contradicts the fact that vvT is an extremal ray of C∗.
Consequently, the description of OP contains no redundancies. Note that every

bisection step generates precisely one additional vertex. Therefore, a partition P
with m simplices has |VP | = n + m vertices. This means that the size of the linear
systems describing OP grows moderately during the iterations of our algorithm.

In contrast to this, the representation

IP := {A ∈ S : vTAv ≥ 0 for all v ∈ VP ,

uTAv ≥ 0 for all {u, v} ∈ EP}

contains a lot of redundancy, as has already been shown in Example 3.2. Redundancies
are generated in situations as the following:

Example 5.3.
(a) For some partition P , let s, u, v, w ∈ VP , and let v = λu + (1 − λ)w with

some λ ∈ (0, 1). Assume that {s, u}, {s, v}, {s, w}, {u, v}, {v, w} ∈ EP . See
Figure 5.1(a) for a picture of this setting.
Then the inequalities uTAv ≥ 0 and wTAv ≥ 0 imply

(λu + (1− λ)w)TAv ≥ 0 ⇔ vTAv ≥ 0,

whence the latter inequality is redundant. Likewise, uTAs ≥ 0 and wTAs ≥ 0
imply vTAs ≥ 0, showing that this is a redundant inequality, too.

(b) The situation is similar if we have v = λs + μu + (1− λ− μ)w with λ, μ, (1−
λ− μ) > 0 (see Figure 5.1(b)).
As before, sTAv ≥ 0 is a convex combination of the inequalities sTAs ≥ 0,
sTAu ≥ 0, and sTAw ≥ 0, and is therefore redundant.
More complicated examples can be constructed analogously.
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(a) {u, v} ∈ I

v

u

p1(v) p2(v)

(b) {u, p1(v)}, {u, p2(v)} ∈ I

u

v

p1(u) p2(u)

(c) {v, p1(u)}, {v, p2(u)} ∈ I

Fig. 5.2. The three cases where e{u, v} is true. Edges which belong to the set I are drawn bold.

Observe that situations like in the example occur in abundance by construction
of the partition. In order to speed up our algorithm, it is therefore essential to find
a way to deal with these redundancies. Note that an n-dimensional simplex has
n + 1 vertices and

(
n+1

2

)
edges. Hence, for a partition P with m simplices, we have

|VP | + |EP | = 1
2m(n + 1)(n + 2), so the full system describing IP would have that

many constraints. This number grows too quickly, so we have to be careful to keep
the system irredundant.

Unfortunately, we can not simply eliminate redundant inequalities and forget
about them, since a redundant constraint may become irredundant in later iterations.
This happens if a redundant inequality is a convex combination of others, and an edge
corresponding to one of the “parent inequalities” is bisected in a later iteration. This
phenomenon makes it necessary to keep track of the history of all vertices and edges
in the partition. We do this by introducing suitable maps.

Definition 5.4. Assume that for all �, partition P�+1 is generated from P�
through bisection of an edge in EP�

. We call two vertices u, w ∈ VP parents of v, if
the edges {u, v} and {v, w} are edges of the partition P and there exists λ ∈ (0, 1)
such that v = λu + (1− λ)w. We call a map

p : VP → VP × VP

with the property that p(v) are parents of v a parent map.
For a given set I ⊂ EP and for {u, v} ∈ EP , we define the boolean function e as

e : {u, v} �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if {u, v} ∈ I

or {u, p1(v)}, {u, p2(v)} ∈ I

or {v, p1(u)}, {v, p2(u)} ∈ I

false else.

(See Figure 5.2 for an illustration). We write eI if it is necessary to emphasize that
e depends on the set I.

Note that for a partition P there may exist several parent maps. In what follows
it does not matter which one is used. The most natural one (which we use in our
implementation) is the “historical” parent map; i.e., if edge {u, v} is splitted at the
point w, we define p(w) = (u, v).

The next lemma states that if e{u, v} is true, then {u, v} is a redundant edge.
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Lemma 5.5. Let p be a parent map and let u, v ∈ VP . If e{u, v} = true, then
there exist {u1, v1}, {u2, v2} ∈ I and λ ∈ (0, 1) such that

uTAv = λuT1 Av1 + (1− λ)uT2 Av2 for all A ∈ S.

Proof. This follows immediately from the definitions.
Definition 5.6. Let {u, v} ∈ I. An edge {s, t} ∈ EP is said to depend on {u, v},

if eI(s, t) = true and eI\{{u,v}}(s, t) = false.
We use the set I to generate a less redundant description of IP . We start with

I = {{ei, ej} : i, j = 1, . . . , n}. If the partition is refined by splitting the edge
{u, w} ∈ I at the point v = λu + (1 − λ)w with some λ ∈ (0, 1), then the set I is
updated as follows:

• remove the edge {u, w} from I,
• insert the edges {u, v} and {v, w} into I,
• for all {s, t} ∈ EP : if {s, t} depends on {u, w}, then insert {s, t} into I.

The next lemma shows that the set I is indeed sufficient to describe the cone IP :
Lemma 5.7. If P is generated from the standard simplex by bisections and the

updating procedure for I described above is used, then

IP = II := {X ∈ S : uTXv ≥ 0 for all {u, v} ∈ I}.
Proof. We have I ⊆ EP because the only edge leaving EP also leaves I, and every

edge inserted into I is an element of EP . Thus, II ⊇ IP .
Let {u, v} ∈ EP . Then {u, v} ∈ I or e{u, v} = true. Obviously the update

procedure maintains this property. Using Lemma 5.5, it follows that II ⊆ IP .
The third point of the update procedure requires knowledge of EP , whence we

have to store also this information. The set EP can also be updated efficiently:
Set E = {{ei, ej} : i, j = 1, . . . , n; i �= j}. Then obviously E = E{ΔS}. If an edge

{u, v} is bisected at a point w, the set E is updated as follows:
• remove the edge {u, v} from E,
• insert {u, w} and {w, v} into E,
• if {u, s} ∈ E and {v, s} ∈ E, then insert {w, s} into E.

The next lemma implies that this update procedure works, i.e., E = EP .
Lemma 5.8. Let {u, v}, {v, w}, {w, u} ∈ EP . Then there is a simplex Δ ∈ P such

that u, v, and w are vertices of Δ.
Proof. If u, v, w ∈ ΔS , then conv{u, v, w} ⊂ ΔS . Since P is a partition of ΔS ,

there exist Δ1, . . . , Δm ∈ P such that conv{u, v, w} ⊆ ⋃mi=1 Δi. Let m be minimal in
the sense that conv{u, v, w} is not covered by any subset of {Δ1, . . . , Δm} and assume
m > 1. Then there exists a vertex s ∈ V{Δ1,...,Δm} \ {u, v, w} with s ∈ conv{u, v, w}.
Since P is constructed through bisections, there must be a vertex on one of the edges
{u, v}, {v, w}, {w, u}. This contradicts {u, v}, {v, w}, {w, u} ∈ EP .

5.3. Tuning the starting partition. Many interesting copositive programs
arise from dualization of a completely positive program of the form

(CP∗)
min 〈C, X〉
s. t. 〈Ai, X〉 = bi, i ∈ {1, . . . , m}

X ∈ C∗.
This holds in particular for many combinatorial problems. For example, the stability
number α(G) of a graph G = (VG, EG) fulfills (cf. [15])

1
α(G)

= min{〈Q, X〉 : 〈E, X〉 = 1, X ∈ C∗},
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where Q = (AG + I) and AG is the adjacency matrix of G. Often a good feasible
solution X of (CP∗) can be obtained through some heuristic procedure. For instance,
for any stable set S ⊂ VG take the vector x to be a suitably scaled version of the
characteristic vector of S, and take X to be xxT .

The dual of (CP∗) is a copositive program of the form

max
m∑
i=1

biyi

s. t. Z = C −
m∑
i=1

yiAi,

Z ∈ C, y ∈ Rm.

This form is equivalent to (CP); i.e., each copositive program can be transformed
from one form to the other.

By weak duality, for any feasible solution X of (CP∗) the value 〈C, X〉 is an upper
bound for the copositive problem, so it is desirable to initialize Algorithm 1 with an
outer approximation OP0 yielding a bound not worse than 〈C, X〉. The next lemma
states that this is always possible.

Lemma 5.9. Let X be feasible for (CP∗). Then there exists a simplicial partition
P such that the optimal value of the outer approximation (OLPP) is at most 〈C, X〉.

Proof. Since X ∈ C∗, it can be decomposed as X =
∑r

k=1 vkv
T
k with v1, . . . , vr ∈

Rn+. Set wk := vk

‖vk‖1
. Then wk ∈ ΔS , and therefore there exists a simplicial partition

P such that w1, . . . , wr ∈ VP . Let (Z, y) be an optimal (dual) solution of the outer
approximation, i.e., (C −∑m

i=1 yiAi) = Z ∈ OP . This implies

wTk

(
C −

m∑
i=1

yiAi

)
wk ≥ 0 for all k ∈ {1, . . . , r}

⇔ ‖vk‖21wTk
(

C −
m∑
i=1

yiAi

)
wk ≥ 0 for all k ∈ {1, . . . , r}

⇒
r∑

k=1

vTk

(
C −

m∑
i=1

yiAi

)
vk ≥ 0

⇔ 〈C, X〉 −
m∑
i=1

yi〈Ai, X〉 ≥ 0

⇔ 〈C, X〉 ≥
m∑
i=1

yibi,

which was to be shown.
The partition P with w1, . . . , wr ∈ VP can be generated iteratively by performing

a radial subdivision as described in section 2 for each of the wi at a time. Observe
that in order to construct P it is necessary to have the decomposition X =

∑r
k=1 vkv

T
k

(with vk ≥ 0 for all k) of the completely positive X . Determining this decomposition
for general X ∈ C∗ is a nontrivial task. However, in the combinatorial applications we
have in mind (max clique, QAP, 0/1-quadratic programming), every feasible solution
corresponds to a rank-one completely positive matrix X which can be utilized as
described above.
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6. Numerical results. We implemented our algorithm in C++ and tested our
implementation on a Pentium IV, 2.8GHz Linux machine with 1GB RAM. As a
solver for the linear subproblems we used COIN-OR Linear Program Solver (CLP,
Version 1.3.3).

We first report results obtained for some instances of the standard quadratic
optimization problem, i.e., the problem of minimizing a nonconvex quadratic form
over the standard simplex:

(6.1) min
x∈ΔS

xTQx.

This is a well-studied problem which can be restated as the copositive program

max λ
s. t. Q− λE ∈ C,

λ ∈ R.

We first discuss the behavior of our algorithm on four examples taken from [4].
These authors solve the problems by using the LP-based approximations Cr and the
SDP-based approximations Kr discussed in section 1.2. As mentioned there, these
approaches provide only one-sided bounds on the optimum, without any information
on the solution quality. An exception is [4], where approximation estimates are given.
Those bounds, however, require knowledge or a good estimate of the range (maximum
minus minimum) of the quadratic form over ΔS .

The instances

Q1 =

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎞
⎟⎟⎟⎟⎠ and Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are Examples 5.1 and 5.2 from [4] and correspond to the problem of determining the
clique number in a pentagon and an icosahedron, respectively. The optimal values
are 1

2 for Q1 and 1
3 for Q2, respectively. Our algorithm solves instance Q1 to optimality

(i.e., the gap between upper and lower bound is closed) in six iterations (0.01 sec) and
instance Q2 in 158 iterations (0.54 sec). In the latter instance we used the fact that
the reciprocal of the optimal value is integer such that both lower and upper bounds
could be rounded accordingly.

Using the approximating cones Cr and Kr , Bomze and de Klerk [4] obtain the
following results: for instance Q1, they get the bound 0 when using C0 and 1

3 when
using C1. The cones K0 and K1 yield the bounds 1√

5
and 1

2 , respectively. Hence, for
this instance K1 yields the exact solution.

For instance Q2, the respective numbers are 0 for the cone C1 and 0.309 for
the cone K1. In this case, the bound obtained by using K1 is not exact. To use
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higher order approximations Kr with r > 1 is difficult, since the dimension of those
problems is rapidly increasing. Bomze and de Klerk do not report a bound obtained
by using K2.

The next instance

Q3 =

⎛
⎜⎜⎜⎜⎝
−14 −15 −16 0 0
−15 −14 −12.5 −22.5 −15
−16 −12.5 −10 −26.5 −16
0 −22.5 −26.5 0 0
0 −15 −16 0 −14

⎞
⎟⎟⎟⎟⎠

is Example 5.3 from [4] and arises in a model in population genetics. Its optimal value
is −16 1

3 . Bomze and de Klerk report the bounds −21 for C1, while cone K1 gives the
exact result. Our algorithm takes 44 iterations (0.03 sec) to solve the problem with
an accuracy of 10−6.

Finally,

Q4 =

⎛
⎜⎜⎜⎜⎝

0.9044 0.1054 0.5140 0.3322 0
0.1054 0.8715 0.7385 0.5866 0.9751
0.5140 0.7385 0.6936 0.5368 0.8086
0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932

⎞
⎟⎟⎟⎟⎠

corresponds to Example 5.3 from [4] after homogenization. This is an example coming
from portfolio optimization. The results reported in [4] are 0.3015 for C1 and 0.4839
for K1, which is optimal. Our algorithm takes 27 iterations (0.01 sec) to obtain an
accuracy of 10−6.

Next, we consider an example taken from Peña et al. [18]. For a graph with 17
vertices, they propose bounds on the clique number obtained by solving SDPs over the
cones Qr (cf. section 1.2). They state that using Q4 is beyond current computational
capabilities. This is indeed a hard instance: our algorithm solves this problem to
optimality in 14,411 iterations (20 hours, 18 min, and 5 sec). In this instance we
again used the fact that the reciprocal is integer to round the bounds appropriately.

We also tested some of the max-clique instances from the Second DIMACS Chal-
lenge ([8]). The smallest instance, Johnson 8-2-4, a graph with 28 vertices, was solved
to optimality in 946 iterations (1 min and 33 sec). We also solved the Hamming 6-4
instance, a graph with 64 vertices. This instance took 2,385 iterations (57 min and
52 sec). For all other instances from this library, our algorithm produced only poor
bounds within two hours of computation time (the best lower bound was usually 3,
and the upper bound stayed at +∞).

We also tried to solve other combinatorial problems like the quadratic assignment
problem using a formulation of Povh and Rendl [20]. However, for most of these
instances, our algorithm gave only trivial or weak bounds.

Finally, we generated random instances of the standard quadratic optimization
problem (6.1), where the entries of the symmetric matrix Q ∈ Rn×n were uniformly
distributed in [−n, n]. For each size, 100 instances where generated. The algorithm
was stopped when the relative gap between upper and lower bound was smaller than
10−6. The results are listed in Tables 6.1 and 6.2.

The first column in the tables denotes the problem dimension, i.e., the number
of variables. The 2nd and 3rd columns describe the average and maximal number of
iterations. Finally, the last four columns give information about the cpu-time.
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Table 6.1

Numerical results for randomly generated instances of the standard quadratic optimization prob-
lem, obtained on a Pentium IV, 2.8GHz Linux machine with 1GB RAM. All problems were solved
up to a relative tolerance of 10−6.

Iterations cpu-time (sec.)
n avg max init avg min max
10 4.25 38 0.0001 0.0034 0 0.04
30 3.26 26 0.0019 0.0056 0 0.05
50 3.78 40 0.0046 0.0124 0 0.11
100 3.32 34 0.0269 0.0557 0.01 0.68
200 2.97 35 0.1154 0.2202 0.04 3.02
500 3.17 27 0.5451 1.5483 0.38 14.26
750 2.92 23 1.9535 3.4373 0.88 30.24

1,000 3.14 29 2.5706 5.9362 1.48 59.89
1,500 4.33 75 5.9710 19.4610 3.51 366.35
2,000 2.85 24 11.4993 23.9875 6.26 225.21

Table 6.2

Numerical results for randomly generated instances of the standard quadratic optimization
problem, obtained on a 16 Dual-Core AMD OpteronTM 8220 machine with 2.8GHz frequency and
130GB RAM. Only one core was used in our computations. All problems were solved up to a relative
tolerance of 10−6.

Iterations cpu-time (sec.)
n avg max init avg min max

2,500 3.13 53 8.9037 30.3367 7.22 571.38
3,000 2.56 22 14.3911 34.5022 10.23 338.79
4,000 2.85 25 26.6361 70.8114 18.48 698.08
5,000 2.45 18 44.2364 101.155 31.18 872.96
7,000 2.45 23 91.2996 203.620 59.89 2,187.65
10,000 2.97 27 192.3010 477.258 116.08 5,184.74

The cpu-time was measured in two parts: The first part is the initialization time,
which is the time needed to set up the starting LP and feed it to the solver. The
initialization time is the same for all instances of the same size and is listed in the
column init. The second part is the actual solution time, which is the elapsed time
from solving the starting LP to termination of the algorithm. This time differs not
only with the size but also with the data of the instance. Therefore, the average,
minimum, and maximum solution times are stated in the respective columns.

As can be seen from Table 6.1, the solution times for these problems are not
bad. However, our algorithm requires a lot of memory, and for this reason higher
dimensional problems took more time on this computer due to memory swapping.
Therefore, we did some further experiments on a computer with larger memory: We
used a 16 Dual-Core AMD OpteronTM 8220 machine with 2.8GHz frequency and
130GB RAM. Our algorithm used only one of the CPUs. On this machine, we were
able to solve even higher dimensional problems in very reasonable time, as can be
seen in Table 6.2.

Observe that in all instances the number of iterations of our algorithm is very low
and comparable to interior point methods.

To provide some intuition on how difficult the problems in Tables 6.1 and 6.2 are
to solve to global optimality, we tried solving these problems with BARON [22] which
is available via the NEOS server. Obviously, it was impossible to solve 100 instances
for each dimension through the NEOS server. Therefore, we were only able to try a
few random instances, which admittedly only give a rough picture. Nonetheless, we
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believe that running 100 instances per dimension would not give an entirely different
pattern. Observe that on the NEOS server, each job is allotted a run time of 1,000
seconds only. NEOS currently uses version BARON 8.1.4.

We observed that for instances of size 10 the solution times of BARON were
similar to ours. With instances of size 30 and bigger, BARON did not succeed to
solve the problems to optimality within the given 1,000 seconds. For instances of size
250 we observed that BARON ran into memory problems and accordingly returned
an error message. So it seems that BARON cannot compete with our method for this
specific type of problems in large dimensions.

Bomze and de Klerk [4] also state some numerical results for randomly gener-
ated instances of the standard quadratic optimization problem. They did calculations
for the linear and semidefinite approximations resulting from the cones C1 and K1,
respectively. Compared with these results, our algorithm is much faster even in consid-
eration of the faster hardware, and is able to solve much bigger instances. Moreover,
we get a guaranteed solution accuracy of at least 10−6 for all instances.

7. Conclusions. We introduced new polyhedral inner and outer approximations
of the copositive cone and presented a solution algorithm for copositive programs
which uses this approximation scheme. The advantage of our algorithm is that it
does not approximate the copositive cone uniformly, but can be guided by the ob-
jective function. Numerical experiments show that the algorithm works very well for
quadratic programs over the simplex.

Open points of interest are:
• Can we use our method to solve other types of quadratic optimization prob-

lems? We tried to solve some box-constrained problems, but were unable to
solve even medium size instances.
• Can we tailor our method towards combinatorial problems like the quadratic

assignment problem, or can we find better copositive formulations of those
problems?

Our approach can easily be extended to optimization problems involving more
general notions of copositivity in the sense of [11]. Here one is concerned with matrices
which are copositive with respect to some general cone D, i.e., matrices that induce a
quadratic form nonnegative not over Rn+ but over D. If D is polyhedral and pointed,
then it is easy to find a base B such that R+B = D. Instead of working with simplicial
partition of ΔS , one then has to work with partitions of B. The computational effort
of course increases if the structure of B is more complex. Also, we are not aware of
applications that necessitate optimization over D-copositive matrices, so we believe
the canonical setting is the most interesting, but see [7] for an application of the
problem of deciding D-copositivity of a matrix.

Acknowledgments. We are grateful to the referees for taking the time to pro-
vide detailed and highly valuable comments on this paper.
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CONVERGENT NETWORK APPROXIMATION FOR THE
CONTINUOUS EUCLIDEAN LENGTH CONSTRAINED MINIMUM

COST PATH PROBLEM∗

RANGA MUHANDIRAMGE†, NATASHIA BOLAND‡ , AND SONG WANG§

Abstract. In many path-planning situations we would like to find a path of constrained Eu-
clidean length in R

2 that minimizes a line integral. We call this the Continuous Length-Constrained
Minimum Cost Path Problem (C-LCMCPP). Generally, this will be a nonconvex optimization
problem, for which continuous approaches ensure only locally optimal solutions. However, network
discretizations yield weight constrained network shortest path problems (WCSPPs), which can in
practice be solved to global optimality, even for large networks; we can readily find a globally op-
timal solution to an approximation of the C-LCMCPP. Solutions to these WCSPPs yield feasible
solutions and hence upper bounds. We show how networks can be constructed, and a WCSPP in
these networks formulated, so that the solutions provide lower bounds on the global optimum of the
continuous problem. We give a general convergence scheme for our network discretizations and use
it to prove that both the upper and lower bounds so generated converge to the global optimum of
the C-LCMCPP, as the network discretization is refined. Our approach provides a computable lower
bound formula (of course, the upper bounds are readily computable). We give computational results
showing the lower bound formula in practice, and compare the effectiveness of our network construc-
tion technique with that of standard grid-based approaches in generating good quality solutions. We
find that for the same computational effort, we are able to find better quality solutions, particularly
when the length constraint is tighter.

Key words. constrained shortest paths, Eikonal equations, optimal trajectories, network opti-
mization, global optimization
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1. Introduction. Path-planning problems in networks have been widely stud-
ied, with numerous applications in diverse fields such as telecommunications routing
(see, for example, [10]) and airline scheduling (see, for example, [1]). Continuous
path-planning problems also arise in varied contexts, such as robotics [14], highway
construction [9, 4], and military path planning [8, 12, 19, 18, 2, 21]. Our interest was
motivated by the problem of planning a path through a naval minefield, which led
us to formulate a path-planning problem in 2D Euclidean space, having the following
form.

Let F : R
2 �→ [0,∞) be a nonnegative, Hölder continuous function defined on a

compact, convex domain Ω ⊂ R
2. We refer to F as the cost function. In a military

application F may, for example, represent the risk distribution in a spatial domain
of detecting an aircraft by radar, or of a ship detonating a mine in a naval mine-
field. Such applications are likely to yield functions F that are nonconvex, and indeed
multimodal (see, for example, [19, 2, 21]). Note that the class of Hölder continu-
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ous functions exclude functions that have discontinuities or singularities. However,
many cost functions used in the literature satisfy the Hölder condition, for example,
probability of detection for submarines used by Caccetta et al. [2] and the cost func-
tions relating to weather disruptions and the reliability of the weather forecast used
by Mitchell and Sastry [16]. The total cost for a path is obtained by integrating F
along that path. While minimizing the total cost, we also wish to limit the Euclidean
length of our path: This can be used to model a practical time or fuel constraint. The
Continuous Length-Constrained Minimum Cost Path Problem (C-LCMCPP) can be
stated as follows: Find a piecewise differentiable curve in Ω between a given start
point a and end point b that minimizes the line integral of F subject to the constraint
that the Euclidean length of the curve is less than or equal a prescribed value L̄.

To be more precise, let C([0, 1], Ω) denote all piecewise differentiable curves pa-
rameterized by s ∈ [0, 1] such that for any p ∈ C([0, 1], Ω) we have p(s) ∈ Ω for all
s ∈ [0, 1]. Define

Γ = {p ∈ C([0, 1], Ω) : p(0) = a, p(1) = b}.

Then the C-LCMCPP can be stated mathematically as:

min
p∈Γ

J [p] =
∫ 1

0

F (p(s))||p′(s)||ds

s.t. Eu[p] =
∫ 1

0

||p′(s)||ds ≤ L̄,(1.1)

where ||.|| denotes the Euclidean norm. The piecewise differentiability of the paths
in Γ make the path integrals in (1.1) well defined. An instance of the C-LCMCPP
takes the form (Ω, F, L̄, a, b). We are interested in the general case, with no further
assumptions on F .

The C-LCMCPP could be approached directly as a continuous problem, but has
more commonly been tackled via network discretization. We discuss the former ap-
proach first. The two principal continuous approaches that are applicable are (i) vari-
ational techniques, such as solution of the Euler–Lagrange equation, or (ii) solution
of the Hamilton–Jacobi–Bellman equation. The former are discussed, for example,
by Zabarankin et al. [21] and Caccetta et al. [2]. However, variational techniques
can only ensure locally optimal solutions (see, for example, introductory remarks in
Tsitsiklis [20], and references therein). Globally optimal solutions can, in principle, be
obtained via the Hamilton–Jacobi–Bellman (HJB) equation (see [20] for an excellent
exposition). These have been extensively explored in the case without the Euclidean
length constraint, which we refer to as the C-MCPP. In this case, the problem is
equivalent to solving the Eikonal equation,

(1.2) ||∇τ || = F (x, y),

where τ , the value function, is the time of arrival of a disturbance propagating from
an initial set on which τ = 0, travelling at a given “slowness” (the inverse of the
speed of propagation), F , at each point. Numerical approaches to solution of this
problem all involve discretization, and there have been several schemes proposed for
which convergence to a global optimum has been proved; we believe Cristiani and
Falcone [5] provide the most recent instance, and give a comprehensive review of
previous approaches. The method in [5] is shown to converge under the relatively mild
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assumption that the speed function (the pointwise reciprocal of our F ) is Lipschitz
continuous.

For the problem of interest to us, the C-MCPP with the length constraint, we
believe no similar methods are known. Indeed, the only approach to constrained prob-
lems via the Eikonal equation that we are aware of is that of Mitchell and Sastry [16].
Their interest is finding paths for aircraft that minimize fuel consumption (i.e., path
length) subject to constraints on the probability of encountering bad weather with
a penalty relating to the reliability of the weather forecast in different regions. To
handle constraints, they recast them as objectives, incorporating them in the objec-
tive function with a multiplier; this returns the problem to one of solving an Eikonal
equation, where now the cost function, or speed, incorporates terms related to the
constraints. Their method samples from possible multipliers, and so samples from the
set of Pareto-optimal solutions for the multiobjective problem. As is noted in [16],
this will not necessarily yield an optimal solution to the constrained problem.

We now discuss approaches based on network discretization. In such approaches,
the spatial domain Ω is discretized, and represented by a set of points, including a
and b, which are used as vertices in a network. The arcs in the network restrict the
path to travel only between pairs of vertices connected by an arc, and the cost of each
arc is taken to be the integral of F along the straight line between the two endpoints
of the arc. The problem of finding a minimum cost path in the network from a to
b is now a standard network shortest path problem, which is easily solvable, with
techniques such as Dijkstra’s algorithm [6] or the A∗ algorithm [11], to give globally
optimal solutions. Problems with the additional Euclidean length constraint take the
form of a Weight-Constrained Shortest Path Problem (WCSPP) in a network, which
is also now very well solved for practical purposes, for example, using the recent
approaches of Dumitrescu and Boland [7], Carlyle and Wood [3], or Muhandiramge
and Boland [17]. In either case, solving the network shortest path problem provides a
feasible solution to the continuous problem, and so yields an upper bound on its value.

For further detail of how continuous problems, particularly those arising from path
planning in a threat environment, can be modeled as network path problems, we refer
the reader to the paper of Zabarankin et al. [21], which gives an excellent exposition.
Zabarankin et al. [21] also derive analytic solutions for the case of a single point
threat, and so can demonstrate computationally that in such cases the upper bounds
generated from network discretizations are very close to the exact global optimum.
Most work along these lines rests with constructing the network discretization and
solving the corresponding network path problem: The focus is on modeling other
practical complications, such as curvature constraints. For example, Piatko et al. [19,
18] discretize with points on a square grid, with arcs from each point to either its
four, or eight, nearest neighbors. Similar networks were used by Fahlen [8], Caccetta
et al. [2], and Zabarankin et al. [21], although [8] and [21] both describe using sixteen
neighbors in the 2D case, and [21] further considers the 3D case. Curvature (turning
angle) constraints are considered in [8, 21], while [2] permits variable speeds for path
traversal, selected from a finite set of possible speeds.

By contrast, Kim and Hespanha [12], in work on an anisotropic form of the
problem (cost depends on direction) without the length constraint, focus on finding
network constructions that provide better approximations. They develop a novel net-
work construction method that they call “honeycomb” sampling. This method selects
points at random from the spatial domain, according to a probability distribution that
ensures either the points are close together, or that a term related to gradients of the
cost function is small. The Voronoi diagram for these points is then constructed, and
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nodes on the network are sampled from the edges of the Voronoi diagram. The hon-
eycomb sampling is compared computationally with (i) a network with nodes selected
uniformly at random from the spatial domain, and (ii) a network with nodes selected
at random according to a probability distribution based on cost function gradients.
Kim and Hespanha [12] report average reductions in the cost of the network paths
found using honeycomb sampling of around 7.5% over the uniform sampling networks
and around 11% over the gradient-based sampling method. Unfortunately, [12] does
not say how their network nodes were connected (they don’t define the arcs), so it is
difficult to assess the relative computational effort for these approaches.

Network discretizations have also been explored by authors in contexts other than
that of the C-LCMCPP or C-MCPP. Kimmel and Kiryati [13] used a grid network
and local refinement procedure to find the minimum length path on a underlying
3D surface given a digitization of the surface. First, the surface was represented by a
graph with a node for each surface voxel and an edge from each node to all the surface
voxel nodes up to one unit away in each direction (a total of 26 possible different
directions). Rather than weight these links by their length, they weighted them
using a path length estimator which gives an unbiased estimate of the path length
on the actual underlying surface. They then found the shortest path in this network
using a standard network shortest path algorithm. Since grid networks suffer from
discretization bias, [13] also used a curve shortening flow method [15] to shorten the
path to a local optimum. Caccetta et al. [2] similarly combine an initial discretization
step with a subsequent local optimization step based on variational techniques. They
use a standard grid network, solve the corresponding network problem approximately,
but then take the resulting path as an initial point for an optimal control solver, to
derive a locally optimal solution.

As far as we are aware, the only work that considers the issue of how far the
solution to the network discretization problem is from that of the original continuous
problem, or considers the possibility of convergence to the globally optimal solution as
the network is refined, is that of Kim and Hespanha [12]. As mentioned earlier, they
tackle an anisotropic problem, and do not apply a length constraint. For this case,
they provide a lower bound formula. Unfortunately, their formula involves a set of
points in the spatial domain that they prove to exist, but which they don’t explicitly
show how to construct. They simply require the set to be “sufficiently dense”. Thus
they cannot readily use their formula to compute a lower bound from a path found in
a given network. Furthermore, although their network construction is motivated by
the theory they provide, it is not explicitly proved to converge to the globally optimal
solution. Indeed, since their construction relies on randomized sampling, such a proof
would have to include some kind of “almost surely” condition.

In this paper, we give a general scheme for convergence of network discretizations.
With this scheme, we show that if we solve the corresponding WCSPP with path
lengths constrained to L̄(1 + γ), where γ depends on the network construction, then
we can compute a lower bound on the global optimum of the C-LCMCPP. We prove
furthermore that this bound converges to the global optimum as the network is refined
in a way described later. We also prove that the solution to the WCSPP with path
length constrained to L̄ (an upper bound on the global optimum of the C-LCMCPP)
also converges to the global optimum as the network is refined.

This is, of course, of theoretical interest, but from a practical point of view,
we still need to construct good network discretizations. An advantage of network
solution methods that make them useful for nonconvex problems is they find global
optima within the network. However how accurately the network solution reflects
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the continuous solution depends greatly on the structure of the network used. One
point that is not hard to see is that the standard grid networks, with arcs only
connecting points to a handful of their nearest neighbors, cannot, in general, converge
to globally optimal solutions of the C-LCMCPP. With such networks, the set of
gradients available to the network path is simply not rich enough to ensure it can
well approximate the optimal continuous path; grid networks suffer from significant
discretization bias. A complete network on a set of grid points would suffice, but a
complete network on a fine grid has an enormous number of arcs, and even efficient
shortest path algorithms are unlikely to be practical if we attempt to use complete
networks. (We note that in the unconstrained case of the C-MCPP, the method of
Cristiani and Falcone [5] implicitly considers a much larger set of tangent directions
by updating node values using the multiple neighboring node values simultaneously.
This allows them to prove convergence.)

Thus the challenge is to structure a network that is “just right”. It needs to
be rich enough to well approximate any optimal path, but not so dense as to make
solution of the network problems impractical. By structuring our network carefully,
we can overcome the discretization effects with a purely network method, avoiding the
need for a local refinement procedure. We can also guarantee that our solution will
converge to the true optimum as we refine our network. We have met this challenge
with what we call a “cellular” network construction, based on triangular tessellation
of the spatial domain, and hexagonal cells. This network is sparse, while still meeting
the conditions for convergence.

We give the results of numerical computations, showing the effects of refining the
network discretization on the lower and upper bounds computed. We also compare
the upper bounds found with those found using the standard grid approach, using
computational effort. This shows that the cellular network gives better solutions,
particularly when the length constraint is tighter.

Thus our contribution in this work is what we believe is the first approach to
a constrained continuous minimum cost path problem that is proved to converge
to the globally optimal solution, under mild assumptions on the cost function. We
also provide computable lower bounds, and a network construction that is sparse,
while still providing better approximations to the continuous solution than standard
approaches.

The paper is structured as follows: First we formalize the concept of using a
network to approximate the C-LCMCPP; next we outline the properties of network
that produce a convergent solution; and lastly we create a method of constructing
networks with these properties and give numerical results.

2. Network formulation. To solve the C-LCMCPP using a network formula-
tion we create a network G = (V, A) consisting of nodes and directed edges in Ω such
that nodes are located at the start point a and end point b and at least one network
path exists that connects a and b. A network path p from node v0 to node vm in G
is a sequence of arcs p = ((v0, v1), (v1, v2), . . . , (vm−1, vm)) such that (vk−1, vk) ∈ A
for all k ∈ {1, . . . , m}. For convenience, we will assume that the graph has a unique
directed edge between any ordered pair of nodes so p can be equivalently written
p = (v0, v1, . . . , vm−1, vm).

As the nodes in our network are also points in the Euclidean plane, we treat them
both as abstract network nodes, e.g., v ∈ V and also directly as coordinate in 2-space,
e.g., ||vi − vi+1|| and v ∈ Ω. The context in which a node is mentioned indicates in
what capacity it is to be treated.
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We assign each edge a cost which is the line integral of F along the edge and a
weight which is the Euclidean length of the edge. We then solve the corresponding
weight constrained shortest path problem (WCSPP): Finding a network path from a
to b that minimizes the sum of the costs of the edges in the path while keeping the
total length of the path less than or equal to a given weight limit.

The quality of our network approximation depends a great deal on the structure of
the network. In particular, we would like the difference between the optimal objective
function value for the C-LCMCPP and the corresponding WCSPP to be as small as
possible. We would also like this difference to shrink to zero as we refine our network.
We formalize the network design into the concept of a network construction as follows.

Definition 2.1. A network construction G is a method that, given an instance I
of the C-LCMCPP and a finite vector of real parameters P from a parameter domain
S, will produce a finite directed network G(I, P ) which includes a and b as nodes and
in which a network path from a to b exists.

The important point is that a network construction can take many different vec-
tors of parameter values and thus produce many related networks for a given instance,
e.g., many different grid spacings for a grid network. We would like to have a network
construction that, given the right series of parameters, produces a series of networks
whose WCSPP optimal objective function values converge to the objective function
value of the C-LCMCPP. This is the focus of the next definition.

Definition 2.2. A convergent network construction G is a network construction
for which for any instance I of the C-LCMCPP we can find a sequence of parameter
sets (P1, P2, . . . ) with Pk ∈ S for k ∈ Z

+ such that the difference between the objective
function value of the solution to I and the approximate WCSPP solution using the
network G(I, Pn) goes to zero as n goes to infinity. The WCSPPs may use a different
weight limit to the C-LCMCPP.

In the following section, we formulate a convergent network construction and in
the process obtain a calculable lower bound on the cost of the optimal solution of the
C-LCMCPP.

3. (δ, ε, κ)-approximation networks. In this section, we outline the proper-
ties of a network that allow us to relate the solution of the WCSPP over the network
to the corresponding C-LCMCPP. Such properties are given by Definition 3.1, and
we call a network that satisfies these properties a (δ, ε, κ)-approximation network. We
will give an example later of how such a network is constructed, but for now we con-
centrate on proving convergence using the abstract properties of the network without
the distraction of outlining the full network construction method.

The motivation behind the definition is that to approximate a continuous path
integral using a network path, we would ideally like the end points of the edges to be
on the path, as standard for the Riemann sum definition of a path integral. In our
case, however, we want to be able to approximate the integral for any reasonable path
in our space using a finite network; thus we cannot guarantee that the approximating
points will be directly on the path. Therefore, the best we can do is guarantee that
the approximating points are within some distance of the path.

To make this guarantee, for any path p ∈ Γ, we have a sequence pG = (v0, . . . , vN ),
with vk ∈ V for k ∈ {0, 1, . . . , N}, which forms the network approximation to the
path. To relate the network path to the continuous path it approximates, we have
the corresponding sequence (p(s0), p(s1), p(s2), . . . , p(sN )) of points on the path p, in
which each point, p(sk), is at most ε away from the nearest corresponding node, vk,
for each k = 0, . . . , N . The distance between these points on the path is bounded
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below by δ and above by κδ. The distance κδ corresponds to the maximum on the
distance between points in a Riemann sum.

Definition 3.1. A (δ, ε, κ)-approximation network G = (V, A) with δ > 0, ε >
0, κ > 1 ∈ R for an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP has the following
properties:

1. the set V contains a and b;
2. for each node v ∈ V \ {b} there is a closed, connected region Rv ⊆ Ω such

that each Rv can be enclosed by a circle of radius κδ; and
3. for each p ∈ Γ with Eu[p] ≤ L̄ there is an ordered sequence of points on

the path p given by (a = p(s0), p(s1), . . . , p(sN−1), p(sN ) = b) with 0 = s0 <
s1 < . . . < sN−1 < sN = 1, and a path (a = v0, v1, . . . , vN−1, vN = b)
in the network G, i.e., a sequence with vk ∈ V and (vk−1, vk) ∈ A for all
k ∈ {1, . . . , N}, such that:
(a) ||p(sk)− p(sk−1)|| ≥ δ, for all k ∈ {1, . . . , N},
(b) ||vk − p(sk)|| ≤ ε, for all k ∈ {0, . . . , N}, and
(c) p(s) ∈ Rvk

for all s ∈ [sk, sk+1] and αvk + (1 − α)vk+1 ∈ Rvk
for all

α ∈ [0, 1], for each k ∈ {0, . . . , N − 1}.
3.1. Length relationship. Consider a (δ, ε, κ)-approximation network for an

instance I of the C-LCMCPP. For an optimal solution p∗ of I, we have the sequence
of points (p∗(s0), . . . , p∗(sN )) on the path guaranteed by Definition 3.1 and clearly

(3.1) Eu[p∗] ≥
N∑
k=1

||p∗(sk)− p∗(sk−1)||.

We would now like to find, for any path p ∈ Γ, the relationship between the
Euclidean length of the piecewise linear path formed by (p(s0), p(s1), p(s2), . . . , p(sN)),
and that formed by the corresponding network path (v0, v1, v2, . . . , vN ) satisfying the
conditions of Definition 3.1.

Lemma 3.2. Any (δ, ε, κ)-approximation network G = (V, A) for an instance
I = (Ω, F, L̄, a, b) of the C-LCMCPP will have the property that for any path p ∈ Γ,
there is a sequence of points on the path (p(s0), p(s1), p(s2), . . . , p(sN )) and a sequence
of nodes (v0, v1, v2, . . . , vN ) with 0 = s0 < s1 < . . . < sN−1 < sN = 1 and vk ∈ V
for all k ∈ {0, . . . , N}, such that ||vk − vk−1|| ≤ ||p(sk) − p(sk−1)||(1 + γ) for all
k ∈ {1, . . . , N} and γ ∈ ΦG where

(3.2) ΦG =
[
c1

ε

δ
+ c2

ε2

δ2
,∞
)

for some c1, c2 ∈ [0, 2] independent of p.
Proof. Let G = (V, A) be a (δ, ε, κ)-approximation network for an instance I

of the C-LCMCPP. For any path p ∈ Γ, let (p(s0), p(s1) , p(s2), . . . , p(sN )) and
(v0, v1, v2, . . . , vN ) be the sequences guaranteed to exist by Definition 3.1. Let Lk =
||vk − vk−1||, δk = ||p(sk) − p(sk−1)|| for k ∈ {1, . . . , N}, and εk = ||p(sk) − vk|| for
k ∈ {0, . . . , N}.

For k ∈ {1, . . . , N}, if p(sk−1) �= vk−1, let αk be the angle defined by p(sk),
p(sk−1) and vk−1 measured anticlockwise from the segment {p(sk−1), p(sk)}, and if
p(sk) �= vk, let βk be the angle defined by p(sk−1), p(sk) and vk also measured
anticlockwise from the segment {p(sk−1), p(sk)}. If p(sk−1) = vk−1, i.e., εk−1 = 0, set
αk to 0 and similarly if p(sk) = vk, i.e., εk = 0, set βk to 0.
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Fig. 3.1. Representation of a path p and its network approximation. Parts of the diagram
applicable to Lemma 3.2 for k = 2 are labelled. The small circles have radius ε and the large circles
have radius δ.

Then from Figure 3.1, we can deduce, by decomposing the segments {p(sk−1),
vk−1} and {p(sk), vk} into components parallel and perpendicular to {p(sk−1), p(sk)}
and using Pythagoras, that

L2
k = (δk − εk−1 cos(αk)− εk cos(βk))2 + (εk−1 sin(αk) + εk sin(βk))2.

To get an upper bound on how much longer Lk could be compared to δk, we take
the absolute value of the component contributions. We also note that 0 ≤ εk−1, εk ≤ ε
due to Condition 3(b) of Definition 3.1. Using this, we then get

L2
k ≤ (δk + ε| cos(αk)|+ ε| cos(βk)|)2 + (ε| sin(αk)|+ ε| sin(βk)|)2.

The effect of the absolute value signs on the sine and cosine function can be
replicated if we make the following transformation which keeps the angles in the
range [0, π2 ]:

αk =

⎧⎪⎪⎨
⎪⎪⎩

αk αk ∈ [0, π2 ],
π − αk αk ∈ [π2 , π],
αk − π αk ∈ [π, 3π

2 ],
2π − αk αk ∈ [3π2 , 2π].

Using the same transformation function for βk, we then expand and simplify using
trigonometric identities and then estimate Lk as follows:

L2
k ≤ δ2

k + 2ε2 + 2δkε(cos(αk) + cos(βk)) + 2ε2 cos(αk − βk)

=⇒ Lk ≤
√

δ2
k + 2ε2 + 2δkε(cos(αk) + cos(βk)) + 2ε2 cos(αk − βk)

= δk

√
1 + 2

(
ε

δk
(cos(αk) + cos(βk)) +

ε2

δ2
k

(1 + cos(αk − βk))
)

≤ δk

√
1 + 2

(
ε

δ
(cos(αk) + cos(βk)) +

ε2

δ2
(1 + cos(αk − βk))

)

≤ δk

(
1 +

ε

δ
(cos(αk) + cos(βk)) +

ε2

δ2
(1 + cos(αk − βk))

)

= δk

(
1 + ck1

ε

δ
+ ck2

ε2

δ2

)
,
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where we have used δk ≥ δ from Condition 3(a) of Definition 3.1 and the inequality√
1 + x ≤ 1 + x

2 , for any x ≥ 0.
In the above, ck1 = cos(αk)+cos(βk) and ck2 = 1+cos(αk−βk). As αk, βk ∈ [0, π2 ],

this implies both cos(αk), cos(βk) ∈ [0, 1]. Also (αk−βk) ∈ [−π2 , π2 ] so cos(αk−βk) ∈
[0, 1]. Thus it is clear that ck1 , ck2 ∈ [0, 2]. We define c1(p) as maxk∈{1,...,N} ck1 and
c2(p) as maxk∈{1,...,N} ck2 and note that c1(p), c2(p) ∈ [0, 2].

Now, let c1 and c2 be the supremum of c1(p) and c2(p), respectively, over all paths
p ∈ Γ. We see that c1, c2 ∈ [0, 2]. Thus

Lk ≤ δk

(
1 + c1

ε

δ
+ c2

ε2

δ2

)
Lk ≤ δk(1 + γ),

where γ ∈ [c1
ε
δ + c2

ε2

δ2 ,∞).
If we return to our original definition of Lk and δk we get Lk = ||vk − vk−1|| ≤

||p(sk)−p(sk−1)||(1+γ) = δk(1+γ) for all k ∈ {1, . . . , N}, where γ ∈ [c1
ε
δ+c2

ε2

δ2 ,∞) =
ΦG for some c1, c2 ∈ [0, 2] independent of p.

Corollary 3.3. Let p∗ be an optimal path of an instance I = (Ω, F, L̄, a, b) of
the C-LCMCPP and G be a (δ, ε, κ)-approximation network for I. Then the network
approximation p∗G = (v0, v1, v2, . . . , vN ) to p∗, guaranteed to exist by Definition 3.1,
satisfies Eu[p∗G] ≤ L̄(1 + γ) for γ ∈ ΦG where ΦG is defined in (3.2).

Proof. Let (s0, . . . , sN ) be defined for p∗ as per Definition 3.1. Then

Eu[p∗G] =
N∑
k=1

||vk − vk−1||

≤
N∑
k=1

||p∗(sk)− p∗(sk−1)||(1 + γ) by Lemma 3.2

≤ Eu[p∗](1 + γ) by (3.1).

Now as p∗ is feasible for the instance I of the C-LCMCPP, we have Eu[p∗] ≤ L̄ so

Eu[p∗G] ≤ L̄(1 + γ).

Corollary 3.3 is important because it tells us that by relaxing the weight constraint
in our network by the factor 1 + γ, the network path p∗G that approximates the
continuous optimal solution will be a feasible path in our WCSPP approximation.

3.2. Lower bounds. Let G be a (δ, ε, κ)-approximation network for an instance
I = (Ω, F, L̄, a, b) of the C-LCMCPP. Then for p∗ an optimal solution to I, the
sequences with properties given by Definition 3.1, that is (p∗(s0), p∗(s1), . . . , p∗(sN ))
with 0 = s0 < s1 < . . . < sN = 1 and the network approximation p∗G = (v0, v1, . . . , vN )
to p∗, are guaranteed to exist. Using the sequence (p∗(s0), p∗(s1), . . . , p∗(sN )) to put
a lower bound on the optimal solution to I we get

(3.3) J [p∗] ≥
N∑
k=1

||p∗(sk)− p∗(sk−1)||M↓(vk−1),

where M↓(vk−1) is the minimum value of F on the region Rvk−1 . Here we have used
Condition 3(c) from Definition 3.1 that the path segment between p∗k−1 and p∗k is
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entirely in the region Rvk−1 . Remember κ > 1 and for each v ∈ V , Rv is a closed
connected region around v that is contained in a circle of radius κδ.

Using the sequence (v0, v1, . . . , vN ) to put an upper bound on the cost of the
network approximation to p∗ we get

(3.4) J [p∗G] ≤
N∑
k=1

||vk − vk−1||M↑(vk−1),

where M↑(vk−1) is the maximum value of F on the region Rvk−1 . Here we again use
Condition 3(c) from Definition 3.1 to guarantee that the arc between vk−1 and vk is
entirely in the region Rvk−1 .

Using inequalities (3.3) and (3.4) we get

(3.5)

J [p∗]− J [p∗G]
1 + γ

≥
N∑
k=1

||p∗(sk)− p∗(sk−1)||M↓(vk−1)−
N∑
k=1

||vk − vk−1||
1 + γ

M↑(vk−1)

≥
N∑
k=1

||p∗(sk)− p∗(sk−1)||M↓(vk−1)−
N∑
k=1

||p∗(sk)− p∗(sk−1)||M↑(vk−1)

≥
N∑
k=1

||p∗(sk)− p∗(sk−1)||(M↓(vk−1)−M↑(vk−1)),

where γ ∈ ΦG. At this stage we make the following definition.
Definition 3.4. ΔG = maxv∈V \{b}(M↑(v) −M↓(v)) or equivalently using the

definition of M↑(v) and M↓(v), ΔG = maxv∈V \{b}(maxx∈Rv F (x)−miny∈Rv F (y)).
The parameter ΔG represents the maximum over all v ∈ V of the variation of

the underlying F function over the regions Rv. Using this definition we proceed as
follows:

(3.6)

J [p∗]− J [p∗G]
1 + γ

≥ −
N∑
k=1

||p∗(sk)− p∗(sk−1)||ΔG using Definition 3.4

≥ −Eu[p∗]ΔG by (3.1)
≥ −L̄ΔG as Eu[p∗] ≤ L̄.

Rearranging (3.6) gives us the relation

(3.7) J [p∗] ≥ J [p∗G]
1 + γ

− L̄ΔG.

If we consider the WCSPP for network G with a relaxed weight constraint, i.e.,
finding the network path in G between nodes a and b with length less than or equal
to L̄(1 + γ), we know that any network approximation p∗G to the optimal path p∗

of instance I is feasible for the relaxed WCSPP by Corollary 3.3. Thus if q∗G is an
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optimal solution to the relaxed WCSPP, then we know J [q∗G] ≤ J [p∗G] by the definition
of the optimality of q∗G. Then

(3.8) J [p∗] ≥ J [q∗G]
1 + γ

− L̄ΔG.

Letting J∗(L̄) = J [p∗] be the optimal objective function value of an instance I
of the C-LCMCPP and J∗

G(L̄(1 + γ)) = J [q∗G] the optimal objective function value of
the relaxed WCSPP using the network G, we get

(3.9) J∗(L̄) ≥ J∗
G(L̄(1 + γ))

1 + γ
− L̄ΔG.

Using this relation, we can calculate concrete lower bounds on the solution of the
C-LCMCPP as we will demonstrate in section 5. Note that if we cannot find the
optimal objective function value of the relaxed WCSPP, any lower bound on optimal
value can replace J∗

G(L̄(1 + γ)) in the formula and produce a valid, if worse, lower
bound on J∗(L̄).

3.3. κ-regular network constructions and convergence. To create a con-
vergent network construction we define κ-regular network constructions in Definition
3.5. When given the right series of parameters a κ-regular network construction pro-
duces a series of (δ, ε, κ)-approximation networks for which δ and ε

δ approach zero.
This property will help us show that κ-regular network constructions are convergent
network constructions.

Definition 3.5. A κ-regular network construction is a network construction G
with parameter domain S for which for any instance I of the C-LCMCPP there exists:

1. A sequence of parameter vectors (P1, P2, . . . ), Pk ∈ S, ∀k ∈ Z
+,

2. A sequence (δ1, δ2, . . . ) with δk > 0, ∀k ∈ Z
+ such that limk→∞ δk = 0 and,

3. A sequence (ε1, ε2, . . . ) with εk > 0, ∀k ∈ Z
+ such that limk→∞ εk

δk
= 0,

such that G(I, Pk) is a (δk, εk, κ)-approximation for all k ∈ Z
+.

Before we prove convergence, we need to introduce the following theorem.
Theorem 3.6. Let J∗(L) with L ∈ [Lmin,∞) be the optimal objective function

value of instance I = (Ω, F, L, a, b) of the C-LCMCPP, where Lmin = ||b − a|| is
the minimum distance between a and b. Then J∗(L) is monotonically decreasing and
continuous for L ∈ [Lmin,∞) if F is Hölder continuous and Ω is convex.

Proof. To show J∗(L) is monotonically decreasing, we note that if p∗(L1) is an
optimal solution to the C-LCMCPP for weight limit L1, then for L2 > L1, p∗(L1)
is a feasible solution to the C-LCMCPP with weight limit L2. Thus if L1 < L2,
J [p∗(L1)] = J∗(L1) ≥ J∗(L2) = J [p∗(L2)] so J∗(L) must be monotonically decreas-
ing. Due to space limitations, the proof that J∗(L) is continuous is omitted.

Note, however, that J∗(L) may not be continuous if we allow obstacles as these
would result in either a discontinuity in F or nonconvexity of Ω. In fact, it is easy
to construct an example with obstacles in which the function J∗(L) is discontinuous.
In this paper we do not consider obstacles; recall our initial assumption that F is
continuous and Ω is convex.

Theorem 3.7. A κ-regular network construction is a convergent network con-
struction.

Proof. Consider a κ-regular network construction G. For any instance I =
(Ω, F, L̄, a, b), we know by Definition 3.5 that there exists a sequence of parameter
vectors, (P1, P2, . . . ), such that G(n) = (V (n), A(n)) = G(I, Pn) is a (δ(n), ε(n), κ)-
approximation network and limn→∞ δ(n) = 0 with limn→∞

ε(n)
δ(n) = 0.
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We see by rearranging (3.9) that

(3.10) J∗
G(n)(L̄(1 + γ(n))) ≤ (J∗(L̄) + L̄ΔG(n))(1 + γ(n)),

where γ(n) = 2 ε(n)
δ(n) + 2 ε(n)2

δ(n)2 ∈ ΦG(n).
To show that the right-hand side of (3.10) converges to J∗(L̄), we need to

show that we can refine the network in such a way that limn→∞ ΔG(n) = 0 and
limn→∞ γ(n) = 0.

Letting Rv(n) be the region around the node v ∈ V (n) \ {b} guaranteed to exist
by Definition 3.1, we see clearly from Definition 3.4,

ΔG(n) = max
v∈V (n)\{b}

( max
x∈Rv(n)

F (x) − min
y∈Rv(n)

F (y)),

that zero is a lower bound on ΔG(n). We know from Definition 3.1 that each region
Rv(n) is contained in a disk of radius κδ(n). Thus the maximum distance between
points in the set Rv(n) is 2κδ(n). Now as F is Hölder continuous, for any points x
and y in Ω we have |F (x) − F (y)| ≤ K||x − y||σ for some positive constant K and
0 < σ ≤ 1. Hence we have

lim
n→∞ΔG(n) = lim

n→∞ max
v∈V (n)\{b}

( max
x∈Rv(n)

F (x)− min
y∈Rv(n)

F (y))

≤ lim
n→∞ max

v∈V (n)\{b}
K|| argmax

x∈Rv(n)

F (x)− argmin
y∈Rv(n)

F (y)||σ by Hölder condition

≤ lim
n→∞K(2κδ(n))σ

≤ 0 as lim
n→∞ δ(n) = 0.

Thus limn→∞ ΔG(n) = 0. Now

lim
n→∞ γ(n) = lim

n→∞

(
c1

ε(n)
δ(n)

+ c2
ε(n)2

δ(n)2

)
= 0 as lim

n→∞
ε(n)
δ(n)

= 0.

So finally, using limn→∞ ΔG(n) = 0 and limn→∞ γ(n) = 0, we get

lim
n→∞ J∗

G(n)(L̄(1 + γ(n))) ≤ lim
n→∞(J∗(L̄) + L̄ΔG(n))(1 + γ(n))

lim
n→∞ J∗

G(n)(L̄(1 + γ(n))) ≤ J∗(L̄).

To show convergence we need a corresponding lower bound on limn→∞J∗
G(n)(L̄(1+

γ(n)). We know J∗(L) is continuous on L ∈ [||b− a||,∞) by Theorem 3.6. A contin-
uous map of a convergent sequence is convergent, and thus

L̄ = lim
n→∞ L̄(1 + γ(n)) as lim

n→∞ γ(n) = 0

J∗(L̄) = lim
n→∞J∗(L̄(1 + γ(n))) as J∗(L) is continuous

J∗(L̄) ≤ lim
n→∞J∗

G(n)(L̄(1 + γ(n))),

where we have used J∗
G(n)(L̄(1+γ(n))) ≥ J∗(L̄(1+γ(n))) by the optimality condition

of the continuous optimal solution. Thus

J∗(L̄) ≤ lim
n→∞J∗

G(n)(L̄(1 + γ(n)) ≤ J∗(L̄).
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So

lim
n→∞J∗

G(n)(L̄(1 + γ(n)) = J∗(L̄).

This shows that if we choose the sequence of parameters (P1, P2, . . . ) guaranteed
to exist by Condition 1 of Definition 3.5, then the optimal objective function values
of the WCSPP’s for the networks G(n) = G(I, Pn) will converge to the objective
function value of the C-LCMCPP as n → ∞. Thus we have shown a κ-regular
network construction is convergent.

Theorem 3.7 shows us that the WCSPP solutions for a κ-regular network construc-
tion using the relaxed weight constraint converge to the solution of the C-LCMCPP.
However, we can also show that the solutions to the WCSPP using the same weight
constraint as the C-LCMCPP also converge.

Theorem 3.8. Given an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP with
L̄ > ||a − b|| and a κ-regular network construction G, the solutions to the WCSPP
using the network G(I, Pn) and the weight limit L̄ will converge to the solution of I
for some sequence of parameter sets (P1, P2, . . . ).

Proof. Choose the parameter set (P1, P2, . . . ) guaranteed to exist by Definition 3.5
such that G(n) = (V (n), A(n)) = G(I, Pn) is a (δ(n), ε(n), κ)-approximation network
with limn→∞ δ(n) = 0 and limn→∞

ε(n)
δ(n) = 0. Let γ(n) = 2 ε(n)

δ(n) + 2 ε(n)2

δ(n)2 ∈ ΦG(n).
Choose a sequence Ln and integer N such that L̄ = Ln(1+γ(n)) and Ln > ||a−b||

for all n ∈ {N, N + 1, . . . }. Note that limn→∞ Ln = L̄ and Ln < L̄ for all n ∈ Z
+.

As G(n) is a (δ(n), ε(n), κ)-approximation network to problem instance (Ω, F, L̄, a, b),
then G(n) is also a (δ(n), ε(n), κ)-approximation network for the problem instance
(Ω, F, Ln, a, b); this is readily seen from Definition 3.1 noting Ln < L̄. Hence, applying
(3.9) for n ∈ {N, N + 1, . . . }, we get

J∗(Ln) ≥
J∗
G(n)(Ln(1 + γ(n)))

1 + γ(n)
− LnΔG(n)

≥
J∗
G(n)(L̄)

1 + γ(n)
− LnΔG(n) as Ln(1 + γ(n)) = L̄.

Rearranging, we get

J∗
G(n)(L̄) ≤ (J∗(Ln) + LnΔG(n))(1 + γ(n)).

Taking limits and using reasoning similar to that used in the proof of Theorem 3.7,
we obtain

lim
n→∞J∗

G(n)(L̄) ≤ (J∗(Ln) + LnΔG(n))(1 + γ(n)),(3.11)

which implies

lim
n→∞J∗

G(n)(L̄) ≤ J∗(L̄) as J∗(.) continuous.(3.12)

Also, the optimization problem that defines J∗
G(n) has a domain that is a subset

of the domain of the optimization problem that defines J∗ so J∗(L̄) ≤ J∗
G(n)(L̄) for

all n ∈ Z
+. Thus limn→∞ J∗

G(n)(L̄) ≥ J∗(L̄). So clearly limn→∞ J∗
G(n)(L̄) = J∗(L̄).

This completes the proof.
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By solving the WCSPP corresponding to a given instance of the C-LCMCPP
with the original rather than relaxed weight constraint we obtain feasible solutions
to the optimization problem and an upper bound. Theorem 3.8 tells us that the
upper bounds will converge to the true continuous optimal solution as we refine our
framework.

Note that the convergence proof does not work if the length constraint is equal to
‖a− b‖. In this case, there is only one possible path, being the straight line from a to
b. However, in our successive network approximations to this problem this path may
not appear in our network as all paths from a to b in our network may be slightly
longer that ‖b−a‖. The WCSPP would then have no feasible solution for L̄ = ‖b−a‖
and thus J∗

G(‖a− b‖) would be undefined. In this case, the successive approximations
could not be said to converge.

4. A specific κ-regular network construction technique. In this section
we create a κ-regular network construction G that satisfies Definition 3.5. We will do
this using one network to create a scaffolding with cells of size of order δ and then
placing a second network used to solve the WCSPP on this scaffolding. The nodes of
the second network are placed on the boundaries of the cells with the nodes spaced
at most 2ε apart. For reasons that will become clear later, we will call this a cellular
network construction.

Our parameter space will be the set S = {(i, j, M) ∈ Z
⊕×Z

⊕×Z
+ : (i, j) �= (0, 0)}

where Z
⊕ is the set of nonnegative integers. We will first show that each network

constructed is a (δ, ε, κ)-approximation network where δ =
√

3
2

‖b−a‖√
i2+j2+ij

, ε = 1√
3M

δ
and κ = 4√

3
.

For an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP, we construct our network
by first creating a tessellation of equilateral triangles covering all of R

2 such that a
and b (the start and end points) are located at triangle corners. The triangle size
and orientation is specified by the parameters i and j. Specifically, we find the side
length lij and unit vectors d1 and d2 such that d2 points π

3 radians anticlockwise to
the direction of d1 and a + ilijd1 + jlijd2 = b. Using the cosine rule and referring to
Figure 4.1(a) we see that

‖b− a‖2 = i2l2ij + j2l2ij − 2ijl2ij cos
(

2π

3

)
,

which we simplify and rearrange to give

lij =
‖b− a‖√

i2 + j2 + ij
.

We can then find d1 and d2 using the sine rule. We construct our tessellation to
align the vectors d1 and d2 with the side length of the triangles given by lij . Figure
4.1(b) shows the resulting tessellation for parameter vector (i, j) = (2, 2).

We define

δ =
√

3
2

lij =
√

3
2

‖b− a‖√
i2 + j2 + ij

.

This definition makes δ the perpendicular height of the equilateral triangles that form
our tessellation.

We will view this tessellation as a network which we call T (i, j) = (SN, SE). To
distinguish this network from the one over which the WCSPP is solved, we call the
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d1li,j

d2li,j

li,ji

o60
li,jj 

Ω

b

a

(a) Construction diagram for T (i, j).

δ

Ω

si

a

sj

b

(b) Adjacent node sets for supernodes si and
sj.

δ

Ω

a

b

se

sf

(c) Boundary supernode sets for superedges
se and sf .

δ

Ω

a

b

se

sf

(d) Boundary superedge sets for superedges
se and sf .

Fig. 4.1. These diagrams show the construction of and examples of the various definitions for
our scaffolding graph. The network was created using (i, j) = (2, 2). Knowing (i, j) and the position
of a and b, we can easily find the length lij and the vectors d1, d2. These are used to construct our
scaffolding graph (SNΩ, SEΩ). The supernode set SNΩ are the black dots shown and the superedge
set SEΩ are dotted lines shown on the diagram.

elements of SN supernodes and the elements of SE superedges. We place a supernode
at every triangle vertex to form the set SN = {a + mlijd1 + nlijd2 : m, n ∈ Z}. Then
the set of superedges are defined by SE = {se = {si, sj} : si, sj ∈ SN, ‖si−sj‖ = lij}.
Note that superedges are undirected.

Definition 4.1. We say the superedge se = {si, sj} contains a point x ∈ Ω if
there exists λ ∈ [0, 1] ⊂ R such that x = λsi + (1− λ)sj.

Naturally, we will only be interested in the part of the tessellation that covers Ω.
Let the set of triangles in T (i, j) that cover Ω, i.e., all triangles that intersect with Ω,
be denoted by TriΩ = {� = {{si, sj}, {si, sk}, {sj, sk}} ⊂ SE : ∃se ∈ � and ∃x ∈ Ω
s.t. se contains x}. We define a new set of supernodes SNΩ = {sn ∈ SN : ∃� ∈ TriΩ
with se ∈ � s.t. sn ∈ se}. We define SEΩ = {{si, sj} ∈ SE : si, sj ∈ SNΩ}. This
gives us our scaffolding graph (SNΩ, SEΩ). We will also make the following definitions
to ease the rest of the discussion.

Definition 4.2. The adjacent node set to a supernode si ∈ SNΩ is the set
Adj(si) = {sj ∈ SNΩ : ‖sj − si‖ = lij}.

Definition 4.3. The boundary supernode set of a superedge se = {si, sj} ∈ SEΩ

is the set BndyNodes(se) = (Adj(si) ∪Adj(sj)) \ {si, sj}.
Definition 4.4. The boundary superedge set of a superedge se ∈ SEΩ is the set

Bndy(se) = {{si, sj} ∈ SEΩ : si, sj ∈ BndyNodes(se)}.
We will place the nodes of our network on the sections of the superedges inside

Ω, and space the nodes such that each point in Ω contained by a superedge is at most
ε from a node on that same superedge. We first choose an integer M ≥ 1 and let
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Ω

b

a

σ

2ε

(a) Diagram of network showing how nodes
(black dots) are placed and the leaving edges
(dashed arrows) for selected nodes.

Ω

a

b

(b) Diagram of network approximation to
a continuous path. The triangles are the
p(sk)’s and the larger circles are the corre-
sponding vk ’s.

Fig. 4.2. These diagrams illustrate node placement, arc choice and path approximation in
κ-regular networks.

ε = 1√
3M

δ. This makes ε the length of the side of a tessellation triangle divided by
2M . We then use the following procedure to place nodes on the superedges, producing
our node set V :

For each superedge se = {si, sj} ∈ SEΩ,
1. If si ∈ Ω, place a node at a distance ε along the superedge from si and

place subsequent nodes at a distance 2ε as long as each node is placed
inside Ω. If the next node to be placed is outside Ω and if the intersection
of the superedge and boundary of Ω is a distance greater than ε from the
last node, or it is the first node to be placed, we place a node on the in-
tersection of the boundary of Ω and se; otherwise we do not place a node.

2. Else If sj ∈ Ω, follow rule 1 but start at sj instead of si.
3. Else If si, sj /∈ Ω, and there exists x ∈ Ω such that se contains x, we

start by placing a node at one of the intersections between the superedge
and the boundary of Ω. We then place nodes at intervals of 2ε until the
next node to be placed would be outside Ω. If the other intersection se
and the boundary of Ω is a distance greater than ε from the last node, we
place a node at the other intersection of the superedge and the boundary.

4. Else If there does not exist x ∈ Ω such that se contains x, then we do
not place nodes on that super edge.

The above procedure defines our node set V . An example of the placement of nodes
can be found in Figure 4.2(a). Next, we define the edge connectivity in our network
but first we make the following definitions.

Definition 4.5. For node i ∈ V \ {a, b} its boundary superedge set, Bndy(i),
is the set Bndy(se) where i is contained by se. This is well defined as each node in
V \ {a, b} is contained by one and only one superedge. The boundary superedge set of
a is Bndy(a) = {se = {si, sj} ∈ SEΩ : si, sj ∈ Adj(a)}. Bndy(b) is not defined.

Definition 4.6. A point x ∈ Ω is contained in Bndy(j) for j ∈ V \ {b} if there
exists se ∈ Bndy(j) such that x is contained by se.

To create our edge set A we will place an edge from each node i ∈ V \ {b} to
every node v ∈ V \ {a} contained by Bndy(i). Note that no edges terminate at a
and that there is an edge ending at b from any node which contains b in its boundary
superedge set. Note, however, that no edges originate at b. Examples of edges are
shown in Figure 4.2(a).
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At this stage we have a network construction G that produces a network G =
(V, A) for a given instance I of the C-LCMCPP and parameter vector P ∈ S. We
now wish to check that each network produced is a (δ, ε, κ)-approximation network.

For any path p ∈ Γ from a to b, we will construct its network approximation in
G = (V, A) in the following manner and show it satisfies the properties of Definition
3.1.

1. Let k = 0, v0 = a, and s0 = 0 (meaning p(s0) = a).
2. Let k = k + 1. Let sk ∈ (sk−1, 1] be the smallest value such that p(sk) is

contained in Bndy(vk−1).
3. Let vk be the closest node in V \ {a, b} on the superedge containing p(sk).

If p(sk) is located on a supernode, it will be contained by many superedges.
In this case we choose vk to be the closest node on any of the superedges in
Bndy(vk−1) containing p(sk), breaking ties arbitrarily.

4. If b is contained in Bndy(vk−1) and if there is no s ∈ [sk, 1] such that p(s) is
contained in Bndy(vk), then let vk = vN = b (replacing the last choice of vk
made in step 3) and sk = sN = 1 and stop. Otherwise go to step 2.

For any path p ∈ Γ we have thus produced two sequences (v0, v1, . . . , vN ) and
(p(s0), p(s1), . . . , p(sN )) with vk ∈ V for k ∈ {0, . . . , N} and 0 = s0 < s1 < . . . <
sN−1 < sN = 1. An example of the sequences (v0, v1, . . . , vN ) and (p(s0), p(s1), . . . ,
p(sN )) for a particular path and network is shown in Figure 4.2(b).

The Euclidean distance from any point on a superedge to any point on the bound-
ary superedge set of that superedge is greater than or equal to δ; see Figure 4.1. We
can see that as p(sk) lies on the boundary superedge set of the superedge which con-
tains both vk−1 and p(sk−1), we have ‖p(sk)− p(sk−1)‖ ≥ δ for k ∈ {2, N}. Also, all
points contained by the boundary superedge set of node a are a distance greater than
δ from a so ‖p(s1)− p(s0)‖ ≥ δ as p(s1) is on the boundary superedge set on node a.
Thus Condition 3(a) of Definition 3.1 is satisfied.

The point p(sk), k ∈ {1, . . . , N − 1} will be approximated by the nearest node
on the same superedge. Nodes are placed on superedges such that any point on
the super edge is at most ε away from a node, and thus the spacing of nodes will
satisfy the condition ‖vk − p(sk)‖ ≤ ε , ∀k ∈ {1, . . . , N − 1}. As a = p(s0) = v0 and
b = p(sN ) = vN , we satisfy Condition 3(b) of Definition 3.1.

By having edges run from each node i ∈ V \ {b} to all the nodes contained by
Bndy(i), we can see that the edges required by a network approximation (v0, v1, v2,
. . . , vN−1, vN ) to any path p ∈ Γ, that is the edges (v0, v1), (v1, v2), . . . , (vN−1, vN ),
are in A. This satisfies Condition 3 of Definition 3.1.

To define the regions Rv we make the following definition.
Definition 4.7. For supernode si ∈ SNΩ the closed region Reg(si) = {λsi +

(1 − λ)(μsj + (1 − μ)sk) : λ, μ ∈ [0, 1], {sj, sk} ∈ SEΩ, {sj, sk} ⊆ Adj(si)}. For a
set of supernodes, we will extend the definition of Reg(.) to be the union of the set of
regions for each supernodes, i.e., Reg({si1, si2, . . . , sin}) =

⋃n
k=1 Reg(sik).

The region Reg(si) will generally be a regular hexagon around supernode si,
except where the network is truncated near the boundary of Ω.

The regions Rv, v ∈ V \ {a, b} in Definition 3.1 are satisfied in our construction
by the regions Reg(se) ∩ Ω where se is the superedge containing node v with the
exception of the case where b is contained by the boundary superedge set of se, in
which case Rv is given by Reg(se∪sb1∪sb2)∩Ω where sb1 and sb2 are the superedges
in the boundary superedge set of v that contain b. Examples of the regions near node
b are given in Figure 4.3. For node a, Ra = Reg(a) ∩ Ω except in the unlikely case
that the boundary of a contains b. In this case Ra = Reg({a} ∪ sb1 ∪ sb2) ∩ Ω where
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Fig. 4.3. Diagrams of the shapes of the regions around end node b.

sb1 and sb2 are the superedges in the boundary superedge set of a that contain b.
Each of the regions can be enclosed in a circle of radius at most 4√

3
δ. This means κ

for our construction is 4√
3
.

For path p, the section of the path from p(sk−1) to p(sk) and the points on the
edge from vk−1 to vk given by λvk−1 + (1 − λ)vk for λ ∈ [0, 1] are entirely contained
in the region Rvk−1 for k ∈ {1, . . . , N}. This satisfies the need for the regions Rv for
v ∈ V \ {b} and Condition 3(c) of Definition 3.1.

Thus for any instance I = (Ω, F, L, a, b) of the C-LCMCPP, the network G(I, P )
for P ∈ S produced by our cellular network construction will be a (δ, ε, κ)-approxima-
tion network.

We now wish to show that our cellular network construction is a κ-regular network
construction. For any instance I = (Ω, F, L, a, b) of the C-LCMCPP, consider the
network G(I, (k, 0, k)). This network will be a (δk, εk, κ)-approximation network for
δk = ‖a−b‖√3

2k , εk = ‖a−b‖
2k2 , and κ = 4√

3
.

Noting the requirements of Definition 3.5, we see that for any instance I of
the C-LCMCPP there is a sequence of parameter vectors (P1, P2, P3, . . . ) = ((1, 0, 1),
(2, 0, 2), (3, 0, 3), . . . ), a sequence of δ values (δ1, δ2, δ3, . . . ) =

(‖a−b‖√3
2 , ‖a−b‖√3

4 ,
‖a−b‖√3

6 , . . .
)

with limk→∞ δk = 0, and a sequence of ε values (ε1, ε2, ε3, . . . ) =
(‖a−b‖

2 ,
‖a−b‖

8
‖a−b‖

18 , . . .
)

with limk→∞ εk
δk

= 0, such that G(I, Pk) is a (δk, εk, κ)-approximation
network. Thus the cellular network construction outlined in this section is a κ-regular
network construction with κ = 4√

3
.

5. Numerical experiments. In this section we will test our κ-regular network
construction method numerically. We implemented the lower bounds scheme in two
different ways. Both schemes use Mathematica to calculate the node positions but
differ in the method of calculating edge costs. In the Gaussian scheme, we used
Mathematica to explicitly calculate the edge costs in the network using three-point
Gaussian quadrature. These edges are then exported to a WCSPP solver written in
C++. The trapezoidal scheme instead uses Mathematica to calculate function values
at each node which are then exported to the WCSPP solver which calculates edge costs
on the fly using the trapezoidal rule. The Gaussian scheme is more accurate, especially
for smaller networks, whereas the trapezoidal scheme is faster as it utilizes the fact the
edges share start and end positions and thus needs fewer function evaluations. The
number of function evaluations is equal to the number of nodes for the trapezoidal
scheme, whereas it is a multiple of the number of edges for the Gaussian scheme. The
trapezoidal scheme also allows larger networks as the edges are not stored explicitly.
Note that while it would be possible to calculate edge costs on the fly using Gaussian
quadrature, this was not implemented.

For both schemes, ΔG was found by numerically finding the maximum and min-
imum value of F (x) for each region Rv, v ∈ V \ {b} using Mathematica. Note that
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Fig. 5.1. Contour plot of functions F1(x, y) and F2(x, y) overlaid with the nodes of cellular
network with parameters (i, j, M) = (24, 0, 24). The lighter regions have higher function values.
The shading scale on the two plots is not the same. Some parts of the region which are not length
feasible have not been meshed. The edges are not shown to avoid cluttering the diagram. The
paths corresponding to the upper bound in the cellular network are the solid white lines. The paths
corresponding to the relaxed weight constraint L̄(1 + γ) are the long dashed lines. Both problems
were solved using the Gaussian scheme. We also calculated the upper bound paths given by a grid
network of 721 by 721 nodes which are shown as the short dashed lines. We can see that the cellular
network produces a smoother path than the grid network. Note that the paths are all piecewise linear
and have not been smoothed in anyway.

all nodes on the same superedge share the same region Rv; thus only one calculation
per superedge is required. We used a γ calculated by the formula

(5.1) γ =
2√
3M

+
2

3M2
,

where M is the number of nodes per side length. Note that we have used the pes-
simistic choice of c1 = c2 = 2 in (3.2) to calculate γ. The calculations were performed
on a Pentium 4 2.4GHz with 512Mb RAM running under Linux.

We use two test functions. The first is F1(x, y) = x. For the second we define a
constituent function:

Gφ1,φ2,σ(x) =
1

πσ2
e−

(x1−φ1)2+(x2−φ2)2

σ2 ,

and use the following as our test function,

F2(x) = G.3,.3,.5(x) + 0.5(G1.3,.4,.4(x) + G.5,1.2,.4(x) + G1.2,1.2,.4(x)).

For both F1 and F2 our region Ω is the closed square with corners at (0, 0) and
(1.6, 1.6). The start point a is (0, 0) and the end point b is (1.6, 1.6). The weight limit
L̄ is 1.1 times the distance between the start and end nodes or approximately 2.489
units. Both functions are plotted in Figure 5.1.

Figure 5.1 shows an example of a network and path that results from our cellular
network construction for both F1(x, y) and F2(x, y). The solid white lines are the best
upper bound paths, found by solving the WCSPP calculation using L̄ as the length
constraint. This is our approximate solution to the C-LCMCPP for this network. To
obtain a lower bound, we use the relaxed weight constraint L̄(1 + γ) and solve the
WCSPP to get a lower bound path, which are the long dashed lines. The objective
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(a) Upper and lower bound. (b) Number of nodes vs number of
edges.

Fig. 5.2. The upper and lower bounds for the C-LCMCPP for the function F1(x, y) vs the
number of nodes. The squares are the lower bounds for i = M and the triangles are the results when
i and M are optimized for an approximately constant number of nodes. The stars are the upper
bounds for the i = M case and the diamonds are the upper bounds for the optimized i and M case.
We can see that the optimization offers an improvement on the lower bound. We can also see a
diminishing return on the improvement to the lower bound as we use more nodes. The number of
edges vs the number of nodes is also given in (b) in which the stars indicate the i = M case and the
diamonds indicate the i and M optimized case.

function values corresponding to these paths are J∗
G(L̄(1 + γ)) which are used in the

lower bounds formula given by (3.9).
For comparison we have shown the paths that result from using a grid network

with edges to the 8 nearest neighbors, shown as the short dashed line. We can see that
the paths are not smooth compared to the ones obtained via the cellular construction.
The number of nodes in the grid network was chosen to approximately equal the
average node density of the cellular network. The objective function values of the
grid network are also higher than that of the cellular network: 1.58602 vs 1.44257 or
9.9% higher for F1(x, y) 1.783 vs 1.734 or 2.8% higher for F2(x, y).

Figures 5.2(a) and 5.2(b) give the results of C-LCMCPP using successively larger
networks to improve the lower bound. The trials were aborted at approximately
300,000 nodes and 150,000,000 edges when the WCSPP’s became too big to solve
effectively due to computational memory limitations.

Two methods of choosing i and M were tested. In the first, we set i = M and
in the second we chose i and M so that they provided the best lower bound for an
approximately constant number of nodes. To do this we note that for our cellular
network

|V | ≈ Kvi
2M and

i ≈
√
|V |

KvM
.(5.2)

We approximate ΔG by

(5.3) ΔG ≈ KΔ

i
.

Substituting (5.2), (5.3), and the formula for γ, (5.1), into the lower bounds formula,
(3.9), gives

(5.4) LB ≈ J∗
G(L̄(1 + γ))

1 + 2√
3M

+ 2
3M2

− L̄KΔ

√
KvM

|V | .
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Fig. 5.3. The upper and optimum lower bounds for the C-LCMCPP for the function F2(x, y)
vs the number of nodes. The squares are the lower bounds calculated using the Gaussian scheme
and the triangles are the lower bounds calculated using the trapezoidal scheme. The diamonds and
the stars are the upper bounds calculated using Gaussian and trapezoidal scheme, respectively.

Given previous lower bounds calculations we can estimate the values of J∗
G(L̄(1+γ)),

KΔ and Kv, and then given a number of nodes |V | we can calculate an approximately
optimal value of M and use (5.2) to find i. We then vary i around this approximate
optimal value to find a local optimum and report this value as the optimal i and M
combination for a particular number of node in Figure 5.2.

The lower bound calculated by (3.9) steadily improves from being negative to
becoming positive at 2,717 nodes and 227,909 edges when i = M = 13 and increases
to within 21.5% of the upper bound at 318,946 nodes and 156,815,926 nodes when
i = M = 64. Optimizing the choice of i and M results in a slight increase of the
best lower bound to within 19.5% of the least upper bound using a network with
(i, M) = (108, 21) having 299,910 nodes and 49,165,143 edges.

Even though the smaller networks produce useless negative lower bounds, they
produce competitive upper bounds. The upper bound for i = M = 7 calculated
using a network of 404 nodes and 14,383 edges was 1.452 which was within 1% of
the best upper bound of 1.442 produced for i = M = 64 with 318,946 nodes and
156,815,926 edges. We can see that the upper bound converges at a much faster rate
than the lower bound. In light of the results of Zabarankin et al. [21], who compare
grid network solutions to analytic solutions available in specific cases, we believe the
upper bounds we compute to be very close to the corresponding global optima.

In Figure 5.3 we find the upper and lower bounds for a given number of nodes
using the optimal choice of i and M for the function F2(x, y). The accuracy of the
numerical integration is important in the smaller networks, which have longer edges;
thus the Gaussian scheme was used for small numbers of nodes. When the size of
the networks became prohibitively large for the Gaussian scheme we switched to the
trapezoidal scheme. The accuracy of the trapezoidal scheme improves noticeably
when the length of the edges is decreased; for example, for (i, j, M) = (74, 0, 6), which
produces a network with 40,358 nodes and 1,869,186 edges, the Gaussian scheme
produces an upper bound of 1.73661 and the trapezoidal scheme produces an upper
bound of 1.73614, a difference of less than 0.03%. The best lower bound found in this
case was within 27.4% of the best upper bound. The trapezoidal scheme was also
much faster with the above instance running in 1h51m using the trapezoidal scheme
as opposed to 7h27m using the Guassian scheme.
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Table 5.1

Percentage improvement in the upper bound when changing from a 8-nearest neighbor grid
network to a cellular with similar number of edges. The results are averaged over 15 different
functions. The standard deviation of the percentage improvement in the upper bound is given as std
dev and No indicates the number of instances in which the cellular network produced a better result
than the grid network out of the 15 instances.

(i, j, M) (6,0,3) (12,0,6) (24,0,12) (30,15)
grid width 21 88 364 572
|A| cell 3279 60508 1053426 2611897
|A| grid 3280 60900 1055604 2610612

L̄ = 2.489 % mean UB gain 9.3 12.8 11.5 11.5
std dev. 17.8 16.2 16.4 16.4
No 9 15 15 15

L̄ = 2.715 % mean UB gain 0.0 7.4 9.0 10.1
std dev. 13.4 8.0 8.4 11.3
No 8 15 15 15

L̄ = 2.942 % mean UB gain -6.1 0.5 2.2 1.9
std dev. 8.3 1.9 1.7 1.9
No 4 11 13 12

Surprisingly, the majority of the computational time was spent on evaluating
F (x, y) and/or evaluating line integrals, exporting data to the WCSPP solver, and
calculating ΔG rather than solving the resulting NP-hard WCSPP. As we were focused
on pushing the lower bound as high as possible, we tested some problems with ex-
tremely long run times. For example, the time for a complete run, that is, calculating
the node positions, calculating ΔG, calculating the edges weights, exporting the edge
data to the WCSPP solver, and solving two WCSPPs (for the upper and lower bound)
for F2(x, y) for (i, j, M) = (143, 0, 12) using 300,170 nodes and 28,302,752 edges was
close to 10 hours giving an upper bound of 1.734 and a lower bound of 1.259. However,
we were able to obtain reasonable upper bounds in much shorter times; for example,
it took only 6min 7sec to do the same calculation with (i, j, M) = (14, 0, 4) to get an
upper bound of 1.754, though the network was not large enough to provide a positive
lower bound.

Though calculating lower bounds can involve extreme computational effort, if we
are looking only for feasible solutions, then we can use much smaller networks and
get reasonable results. Given that the upper bound for cellular networks seems to
converge quite rapidly, we compared the values of the upper bound, thus the best
feasible solution found for the problem, to the upper bounds produced by 8 nearest
neighbor grid network with a similar number of edges. We again set Ω to the closed
square with corners at (0, 0) and (1.6, 1.6) and the start point to a = (0, 0) and the end
point to b = (1.6, 1.6). We used three different weight limits for each function: 1.1,
1.2, and 1.3 times the distance from the start to end point, respectively. Besides using
the functions F1 and F2, all the other functions we used were a sum of 15 Gaussians
of the form Gφ1,φ2,σ(x) with uniformly random centers, (φ1, φ2) ∈ Ω, and σ uniformly
random in the range [.1, .3].

Table 5.1 shows us that, as we would expect, in the majority of cases, the upper
bound produced by the cellular network is lower than that produced by a grid network
with a similar number of edges. The clearest trend is the mean percentage improve-
ment of the cellular network over the grid network improves as the weight constraint
is made tighter. The cellular networks also tend to do better than the corresponding
grid network when the networks are made larger.

We can also see that the variability of the improvement increases with the tighter
weight constraint. This may be due to the weight constraint forcing the choice of high
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cost arcs in the grid network as paths in the grid network are longer than they need
be due to the restrictions in the number of directions available.

6. Conclusion. We have produced a network approximation method to the con-
tinuous length constrained minimum cost path problem (C-LCMCPP) for which we
can show the network approximation converges to the continuous solution as the net-
work is enlarged in an appropriate manner. We then defined (δ, ε, κ)-approximation
networks and showed that for such a network, a lower bound can be calculated. We
went on to define a κ-regular network construction, which can produce a sequence
of (δ, ε, κ)-approximation networks such that the lower bound (and upper bound)
converges to the continuous optimum.

Having developed the theory, we then created a specific example of a κ-regular
network construction, which we dubbed a cellular network construction, and tested
it computationally. We were able to calculate lower bounds that came within 19.5%
of the best upper bound. We also found that the cellular networks produced upper
bounds that converged rapidly and that corresponded to smoother paths with lower
objective function values than the solutions produced by grid networks.

In the future, we wish to improve the lower bounds further. One possible method
is a nonuniform triangulation of space so that node placement better reflects the
contours of the underlying function. We also wish to explore the potential of iteratively
eliminating regions of space using lower bounds; this would allow better lower bounds
to be obtained for the same computational effort.

We may also look at restricting the underlying function to be a triangulated
surface to simplify function evaluations, given that this is the way many surfaces in
practical situations are represented. The function triangulation could be made to
coincide with the triangulation of the cellular network. Implementing this method of
function evaluation in C++ would offer a significant speed up to the algorithm over
using analytical functions in Mathematica.

The cellular network concept may also be applied to higher dimensional spaces.
One could imagine the cells becoming interlocking polytopes with nodes placed on the
facets of these polytopes. While the theory underlying such a construction may be
relatively straightforward, the number of nodes required by the discretization would
grow enormously. However, given that the upper bounds for two dimensional networks
converge rapidly, it may be possible that useful upper bounds for higher dimensional
problems are attainable.

Lastly, we may wish to change the length constraint to a constraint with the same
form of the objective function. This would allow more versatility in the application
of the theory to practical situations. The main challenge here would be proving
that suitably relaxing the constraint guarantees that a network approximation to an
optimal path exists.
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1. Introduction. We consider the following mathematical program with com-
plementarity constraints (MPCC):

min f(x)
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) ≥ 0, Hl(x) ≥ 0,
Gl(x)Hl(x) ≤ 0,
l = 1, 2, . . . , nc,

(1.1)

where f : Rn → R, g : Rn → Rni , h : Rn → Rne , and G, H : Rn → Rnc

are continuously differentiable. This problem plays an important role in many fields
such as engineering design, economic equilibrium, and multilevel games, and has at-
tracted much attention in the recent literature. The major difficulty in solving (1.1) is
that its constraints fail to satisfy the Mangasarian Fromovitz constraint qualifications
(MFCQ) at any feasible point [5]. This implies an empty or an unbounded KKT
multipliers set, so that the standard methods may encounter difficulties, or even fail
for solving this problem.

Over the past years, many papers that dealt with MPCC appeared in the lit-
erature. Some of them have gone into the search for the existence and the sta-
tionarity characterizations of its solution, while others proposed a number of ap-
proaches to solve MPCC, for example, the sequential quadratic programming method
[1, 2, 10, 11, 17, 23], the branch and bound approach [3], the smoothing implicit
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Fig. 1.1. The smooth regularizations [12, 28].

programming approaches [6, 23], and interior point methods [4, 8, 20, 22, 23]. In
parallel, considerable efforts have investigated the search of the regular approxima-
tions of MPCC to apply usual nonlinear programming algorithms. Fukushima and
Pang [12] and Facchinei et al. [9] suggested a smoothing family, by replacing the com-
plementarity system with the perturbed Fischer–Burmeister function [18]; see Figure
1.1(a):

φl(Gl(x), Hl(x), t) = Gl(x) + Hl(x) −
√

G2
l (x) + H2

l (x) + t = 0.

Hu and Ralph [15] presented a penalty method where the complementarity term
Gl(x)Hl(x) ≤ 0 is moved to the objective in the form of an l1-penalty function:

min f(x) + ρ

nc∑
l=1

Gl(x)Hl(x).

Scholtes [28], see Figure 1.1(b), presented a regularization scheme where the comple-
mentarity term Gl(x)Hl(x) ≤ 0 is changed to

Gl(x)Hl(x) ≤ t, l = 1, . . . , nc,

and the relaxation parameter t is driven to zero.
Subsequently, Demiguel et al. [8], see Figure 1.2(a), proposed the following regu-

larization:

Gl(x) ≥ −t1, Hl(x) ≥ −t1, Gl(x)Hl(x) ≤ t, l = 1, . . . , nc.

Lin and Fukushima [21], see Figure 1.2(b), considered the following regularization
scheme,

Gl(x)Hl(x) ≤ t2, (Gl(x) + t)(Hl(x) + t) ≥ t2, l = 1, 2, . . . , nc.

All these methods use regularizations that transform the thin and nonsmooth,
nonconvex feasible region into a thick and smooth one, and because of the smoothing
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(a) Demiguel et al.

Fig. 1.2. The smooth regularizations [8, 21].

Table 1.1

The stationary points of the smooth regularizations for the problem (1.2).

Ref. case 1 case 2

[9, 12] (x, y) =
(
1, t

2

)
, η = (1 − t

2
) (x, y, η) =

√
t
(

1
2
, 1, 2√

t
− 3

2

)
(x, y) =

(
t
2
, 1
)
, η = 1− t

2
(x, y, η) =

√
t
(
1, 1

2
, 2√

t
− 3

2

)

[8, 28] (x, y) = 1
2

(1, 1) ±
(√

1
4
− t
)

(1, −1) (x, y) =
√

t (1, 1)

for t ≤ 1
4
; (μ1, μ2, η) = (0, 0, 1) (μ1, μ2, η) =

(
0, 0, 1−√

t√
t

)

(x, y) = 1
2

(1, 1) ±
(√

1
4
− t2

)
(1, −1) (x, y) = (t, t)

[21] for t ≤ 1
2
, (η1, η2 ) = (1, 0) (η1, η2 ) =

(
1−t

t
, 0
)

(x, y) =

(
1− t− y,

(1−t)±
√

(1−t)(1+3t)

2

)
(x, y) = (−2t, −2t)

for t ≤ 1, (η1, η2 ) = (0, −1) (η1, η2 ) =
(
0, 1+2t

t

)

aspect, the sequence of stationary point generated by these methods may converge to
a stationary point where the associated Lagrange multipliers are of the wrong signs
(C-stationary), as illustrated by the following example.

Example 1. Consider the following problem:

min 1
2 (x− 1)2 + 1

2 (y − 1)2

s.t. x ≥ 0, y ≥ 0, xy ≤ 0.
(1.2)

Let μ1, μ2, η, η1, and η2 be the Lagrange multipliers corresponding to the constraints
of the different regularization schemes described above. Table 1.1 summarizes the
stationary points of each regularized problem:

It is clear that all stationary points in case 1 converge to (1, 0) and (0, 1) which
are the good stationary points of (1.2) with good signs for the Lagrange multipliers
(S-stationary), but the solutions in case 2 converge to a point (x, y) = (0, 0) which is
only C-stationary for the problem (1.2), that is, a stationary point where its Lagrange
multipliers are of wrong signs.
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Another difficulty in dealing with the smooth regularization is that the regularized
problem may fail to have a stationary point even if the MPCC problem has one, as
the following example illustrates:

Example 2.

min −y
s.t. x ≥ 0, y ≥ 0, xy ≤ 0.

(1.3)

Every point on the positive x-axis is a local minimizer of (1.3), but the smooth regular-
izations have no stationary point. It is easy to verify that the second-order necessary
optimality condition does not hold at solutions in case 2 for the smooth regularized
problems in Example 1 and at any point of the x-axis for the original MPCC prob-
lem (1.3). Consequently, the previous smooth regularizations need some second-order
condition to ensure that stationary points exist for the regularized problem and also
that such points are not spurious C-stationary points of the MPCC. This necessity
to resort to second-order conditions in order to obtain first-order stationary results is
undesirable.

In this paper, we present a new regularization scheme NLP(t) where the comple-
mentarity system is relaxed to inequalities with a relaxation parameter t, see Figure
1.3:

min f(x)
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) ≥ −t, Hl(x) ≥ −t,
(Gl(x)− t)(Hl(x) − t) ≤ 0,
l = 1, 2, . . . , nc.

(1.4)

With the proposed regularization (1.4) we do not have to assume any second-order
condition to ensure the existence of the regularized stationary points or that such
points are not attracted by unwanted C-stationary points of the MPCC. We will show
that, under the MPCC-linear independence constraint qualifications (MPCC-LICQ),
the standard linear independence constraint qualifications (LICQ) hold for each feasi-
ble point of the problem (1.4) except the points x which satisfies Gl0(x) = Hl0(x) = t
for some l0. However, we show that the Lagrange multipliers exist at these points.
Global convergence results will be derived under fairly general conditions. It is shown
that a cluster point of the stationary points of (NLP(t)) is M-stationary under the
MPCC-linear independence constraint qualification (MPCC-LICQ). The convergence
to the strong stationary point is deduced if we suppose some nondegeneracy condi-
tions. We further provide some conditions which guarantee that a local minimizer of
the MPCC is a limit point of the local minimizers of (NLP(tk)) as tk decreases to zero.

The existence of the Lagrange multipliers is the main motivation to consider an
active set method for solving this regularization scheme. An interesting idea, for
reducing the relaxation parameter t, similar to the so-called elastic mode, is to use
an explicit penalization of the parameter t. For a given penalty parameter ρ, this
penalized problem can be written as follows:

min f(x) + ρt
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) ≥ −t, Hl(x) ≥ −t,
(Gl(x)− t)(Hl(x) − t) ≤ 0,
l = 1, 2, . . . , nc.

(1.5)
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Fig. 1.3. Our nonsmooth regularization (1.4).

A similar analysis for the regularization scheme (1.4) may also be extended to this
variant. The main difference with the elastic mode as proposed in [2] is that our ap-
proach relaxes the complementarity constraints and keeps them explicit as constraints,
but the elastic mode [2] removes the complementarity term from the formulation (1.1)
by adding an l1-penalty c (G(x))TH(x) to the objective function, where c is a posi-
tive parameter. Moreover, the sequence of first-order points (xk, tk) of the formulation
(1.4) has an accumulation point that is M-stationary under MPCC-LICQ and strongly
stationary if the penalty parameter ρk is bounded, while the elastic mode in [2] has
similar convergence results but with a sequence of second-order points.

The paper is developed as follows. In section 2, we review various stationar-
ity concepts of the MPCC (1.1) and we show that, under the linear independence
constraint qualifications of MPCC (MPCC-LICQ), the standard linear independence
constraint qualifications hold for this regularization except some particular points. In
section 3, the existence of the Lagrange multipliers is shown for every feasible point
of the regularized problem. In section 4, we define a weak stationarity of MPCC used
in our convergence analysis. It is shown that, under some conditions, the KKT points
of the problem NLP(t) converge to the strongly stationary point of the MPCC as the
relaxation parameter decreases to zero. In section 5, we investigate the properties of
the attractors. In section 6, the extension of the proposed regularization is discussed.
In section 7, we present a practical algorithm for MPCC problem (1.1) and the con-
vergence results of the penalized problem. The active set method applied to original
MPCC (1.1) and the proposed regularization is discussed. We conclude the paper in
section 8.

We will use the following notations. A letter with superscript or subscript k is
related to the kth iteration. We denote by eq the vector of length q whose entries are
all 1, that is, eq = (1, 1, . . . , 1)T . The notation O(·) is used in the usual sense. We
often have to deal with different index sets for the active constraints of the MPCC or
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regularization problems. Here is a list of them:

IF = IF (x) = {i : Fi(x) = 0} , I±F = I±F (x, t) = {i : Fi(x)± t = 0} ,
I = IG ∩ IH , IGH = IG ∪ IH , I− = I−G ∩ I−H , I±GH = I±G ∪ I±H ,
I∗ = IG∗ ∩ IH∗ , IG∗H∗ = IG∗ ∪ IH∗ , I−k = I−

Gk ∩ I−Hk , I±
GkHk = I±

Gk ∪ I±Hk ,

with F k = F (xk), F ∗ = F (x∗), and F ∈ {g, G, H}.
2. Stationarity concepts, constraints qualifications, and strict comple-

mentarity. In this section, we recall some notions from the MPCC theory and its
regularization which we will use in the sequel. We give the different types of sta-
tionarity and the constraint qualifications for MPCC (1.1) in subsection 2.1 and the
first-order stationarity conditions for the NLP(t) in subsection 2.1.

2.1. Stationarity, linear independence constraint qualification, and strict
complementarity for MPCC. A feasible point x∗ of (1.1) is called critical or weakly
stationary [26], if there exist MPCC multipliers ν∗, π∗, μ∗

1, μ∗
2 satisfying:

∇xL(x∗, ν∗, π∗, μ∗
1, μ

∗
2) = 0,

0 ≤ ν∗ ⊥ g(x∗) ≤ 0,
μ∗

1 ⊥ G(x∗) ≥ 0,
μ∗

2 ⊥ H(x∗) ≥ 0,

(2.1)

where L(x, ν, π, μ1, μ2) is the MPCC Lagrangian of (1.1) at (x∗, ν∗, π∗, μ∗
1, μ

∗
2):

L(x, ν, π, μ1, μ2) = f(x) + νT g(x) + πTh(x)− μT1 G(x)− μT2 H(x).

Scheel and Scholtes [26] give the following types of stationary point x∗:
C-stationarity:

ν∗
i ≥ 0 and μ∗

1,lμ
∗
2,l ≥ 0 for all l ∈ I∗;(2.2)

M-stationarity:

ν∗
i ≥ 0 and for all l ∈ I∗ either μ∗

1,l > 0 and μ∗
2,l > 0, or μ∗

1,lμ
∗
2,l = 0,(2.3)

B-stationarity: the points for which d = 0 is a solution of the problem ob-
tained by linearizing all the data of (NLP) with the exception of the complementarity
constraints G(x) ◦H(x) ≤ 0,

S-stationarity:

ν∗
i ≥ 0 and μ∗

1,l ≥ 0, μ∗
2,l ≥ 0 for all l ∈ I∗.(2.4)

If a point is a strong stationary point, then it is also a stationary point of any other
type [26]. Also, a stationary point of any type is a weak stationary point [26].

Remark. C-stationarity and M-stationarity actually are Fritz–John points for
MPCC with a vanishing objective multiplier. The reason for considering these various
weaker stationarity concepts is that such points are potential attractors of methods
based on the penalization or the regularization [8, 9, 12, 15, 16, 21, 28]. S-stationary
is what we look for. As developed in the sequel, C-stationary may be avoided using
the MPCC structure.

Definition 2.1. The MPCC-LICQ is satisfied at the x∗ if the following set of
vectors is linearly independent:

{∇gi(x∗)| i ∈ Ig∗} ∪ {∇hj(x∗)} ∪ {∇Gk(x∗)| l ∈ IG∗} ∪ {∇Hl(x∗)| l ∈ IH∗} .
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We now give two varieties of strict complementarity at a weak stationary point
[25], which we will use in the sequel.

Definition 2.2. Let x∗ be a weak stationary point for MPCC.
• The upper level strict complementarity (ULSC) holds at x∗, if there exists

MPCC multipliers satisfying (2.1) with μ∗
m,1μ

∗
m,2 �= 0 for all m ∈ I∗.

• The lower level strict complementarity (LLSC) holds at x∗, if there exists
MPCC multipliers satisfying (2.1) and I∗ = ∅.

2.2. Stationarity conditions for NLP(t). In this subsection, we discuss the
exact and inexact first-order stationarity conditions for NLP(t). We define the La-
grangian function for this problem as follows:

Lt(x, ν, π, μ1, μ2, η) = f(x) +
ni∑
i=1

νigi(x) +
ne∑
j=1

πjhj(x) −
nc∑
l=1

μ1,l(Gl(x) + t)

−
nc∑
l=1

μ2,l(Hl(x) + t) +
nc∑
m=1

ηm(Gm(x) − t)(Hm(x) − t).
(2.5)

The first-order necessary optimality conditions for the problem NLP(t) are then if x
is a local minimum of NLP(t), then there exists ν, π, μ1, μ2, and η such that

∇xLt(x, ν, π, μ1, μ2, η) = 0,
0 ≤ ν ⊥ g(x) ≤ 0,

0 ≤ μ1 ⊥ (G(x) + t · ec) ≥ 0,
0 ≤ μ2 ⊥ (H(x) + t · ec) ≥ 0,

0 ≤ η ⊥ [(G(x) − t · ec)(H(x) − t · ec)] ≤ 0,

(2.6)

within an algorithmic framework, we will need the following notion of approximate
stationarity.

Definition 2.3. We say that x is an ε-stationary point of NLP(t) if there exist
multipliers ν, π, μ1, μ2, η satisfying

‖∇xLt(x, ν, π, μ1, μ2, η)‖∞ ≤ ε,
0 ≤ ν, g(x) ≤ 0, νT g(x) ≥ −ε
|h(x)| ≤ ε,

∣∣πTh(x)
∣∣ ≤ ε

0 ≤ μ1, (G(x) + t · ec) ≥ 0, μT1 (G(x) + t · ec) ≤ ε,
0 ≤ μ2, (H(x) + t · ec) ≥ 0, μT2 (H(x) + t · ec) ≤ ε,
0 ≤ η, (G(x) − t · ec)(H(x) − t · ec) ≤ 0,
ηT [(G(x) − t · ec)(H(x) − t · ec)] ≥ −ε.

(2.7)

We next discuss constraint qualifications for problem (NLP(t)). We denote

D = {x : ∃l such that Gl(x) = t, Hl(x) = t} .(2.8)

The following result shows that the MPCC-LICQ implies the LICQ of NLP(t) for
sufficiently small t.

Theorem 2.4. Suppose that MPCC-LICQ holds at a feasible point x∗ of the NLP
(1.1), then there exists a neighborhood U of x∗ and a scalar t∗ > 0 such that for every
t ∈ (0, t∗) the LICQ holds at every feasible point x ∈ U \ D of NLP(t).

Proof. We have the following relations:

Ig ⊆ Ig∗ ,
I+
GH ∪ I−GH ⊆ IG∗H∗ ,
I+ ∩ I−GH = ∅,

(2.9)



A NEW REGULARIZATION SCHEME FOR MPCC 85

which hold for all x in U and t in (0, t∗) for sufficiently small t∗ > 0. Indeed, for such
t, the active gradients of NLP(t) at a feasible point x ∈ U are

∇gi(x), i ∈ Ig,
∇hj(x), j = 1, . . . , ne,
∇Gl(x), l ∈ I+

G ,
∇Hr(x), r ∈ I+

H ,
(Hm(x) − t)∇Gm(x) + (Gm(x)− t)∇Hm(x), m ∈ I−GH ,

We then note that if m ∈ IGH ∩ (I+
G ∪ I+

H) we have

∇((Gm(x) − t)(Hm(x) − t)) =

⎧⎨
⎩
−2t∇Hm(x), if m ∈ I+

G ,

−2t∇Gm(x), if m ∈ I+
H .

In view of the MPCC-LICQ assumption and (2.9), the equation

∑
i∈Ig

νi∇gi(x) +
ne∑
j=1

πj∇hj(x) −
∑
l∈I+

G

μl,1∇Gl(x) −
∑
r∈I+

H

μr,2∇Hl(x)

+
∑

m∈I−
GH

[ηm(Hm(x)− t)∇Gm(x) + ηm(Gm(x) − t)∇Hm(x)] = 0
(2.10)

implies that νi = πj = μl,1 = μr,2 = 2ηmt = ηm(Hm(x) − t) = ηm(Gm(x) − t) = 0.
Finally, if m ∈ I−GH \ I+

GH we have either Gm(x) = t or Hm(x) = t but not both,
because x /∈ D by assumption. Hence ηm = 0.

3. Existence of Lagrange multipliers for the NLP(t). This section deals
with the existence of Lagrange multipliers for a stationary point x of the regularized
problem NLP(t) under the MPCC-LICQ. Let P(I−) be a set of parts of I−. We
associate with an index set I ∈ P(I−) the ordinary nonlinear program NLPI(t):

min f(x)
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) ≥ −t, Hl(x) ≥ −t, l /∈ I−,
(Gl(x)− t)(Hl(x) − t) ≤ 0, l /∈ I−,
Gr(x) ≥ t, −t ≤ Hr(x) ≤ t, r ∈ I,
Hm(x) ≥ t, −t ≤ Gm(x) ≤ t, m ∈ Ic,

(3.1)

where Ic denotes the complement of I in I−. We denote by FNLPI(t) and FNLP (t) the
feasible sets of the programs (3.1) and NLP(t) respectively, and obtain the relations

FNLPI (t) ⊆ FNLP (t) =
⋃

I∈P(I−)

FNLPI (t)

locally around the point x. In particular, x is a local minimizer of program NLP(t) if
and only if it is a local minimizer of the problem (3.1) for every I. Since the stationary
points of the problem (3.1) do not belong to the set D, the following lemma is an
immediate consequence of the Theorem 2.4.

Lemma 3.1. Suppose that x∗ satisfies MPCC-LICQ, then there exists a neighbor-
hood U of x∗ and a scalar t∗ > 0 such that for every t ∈ (0, t∗) LICQ holds at every
feasible point x ∈ U of problem (3.1).
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Lemma 3.2. Let x be a solution of NLPI(t) for every I ∈ P(I−). Suppose that
the LICQ holds at x for NLPI(t), then for m ∈ I− the Lagrange multipliers μ1,m and
μ2,m associated, respectively, to the constraints Gm(x) and Hm(x) vanish.

Proof. x is a local minimizer of the NLPI(t) which satisfies the LICQ, implies
the existence and uniqueness of the Lagrange multipliers (ν, π, μ1, μ2, η) such that

∇f(x) = −
∑
i∈Ig

νi∇gi(x) −
ne∑
j=1

πj∇hj(x) +
∑
l∈I−

G

μ1,l∇Gl(x) +
∑
l∈I−

H

μ2,l∇Hl(x)

−
∑

m∈I+
G\I−

ηm(Hm − t)∇Gm(x)−
∑

m∈I+
H\I−

ηm(Gm − t)∇Hm(x)

−
∑
m∈I−

(μ1,m∇Gm(x) + μ2,m∇Hm(x)),

νIg ≥ 0, μ1,I−
G
≥ 0, μ2,I−

H
≥ 0, η1,I+

G
≥ 0, η2,I+

H
≥ 0,

μ1,I ≤ 0, μ2,I ≥ 0, μ1,Ic ≥ 0, μ2,Ic ≤ 0,

(3.2)

x is also a local minimizer of the NLPIc(t) which satisfies the LICQ, then there exists
the only Lagrange multipliers (ν̄, π̄, μ̄1, μ̄2, η̄) such that we have the same conditions
as (3.2) with this small modification in the two last lines

μ̄1,I ≥ 0, μ̄2,I ≤ 0,
μ̄1,Ic ≤ 0, μ̄2,Ic ≥ 0.

Hence, under the LICQ we have

νIg = ν̄Ig , πj = π̄j , j = 1, . . . , ne,
μ1,I−

G
= μ̄1,I−

G
, μ2,I−

H
= μ̄2,I−

H
,

η1,I+
G

= η1,I+
G
, η2,I+

H
= η2,I+

H
,

0 ≥ μ1,I = μ̄1,I ≥ 0, 0 ≤ μ2,I = μ̄2,I ≤ 0,
0 ≥ μ1,Ic = μ̄1,Ic ≥ 0, 0 ≤ μ2,Ic = μ̄2,Ic ≤ 0.

(3.3)

From the two last lines in (3.3), we deduce that

μ1,I− = μ̄1,I− = 0, μ2,I− = μ̄2,I− = 0.

Theorem 3.3. Let
{
tk
}

be a sequence of positive scalars tending to zero, let{
xk
}

be a stationary point of NLP(t) tending to x∗, and suppose MPCC-LICQ holds
at x∗. Then, for every sufficiently large k there exists Lagrange multipliers

νki , i ∈ Igk πkj , j = 1, . . . , ne,

μk1,r, l ∈ I+
Gk , μk2,r, r ∈ I+

Hk ,
ηkm, m ∈ I−

GkHk

for NLP(tk) at xk, and they are unique if m ∈ I−
GkHk \ I−k .

Proof. Let xk be a stationary point of the regularized problem NLP(tk). Then
there exists a nonvanishing vector of the Lagrange multipliers

(
αk, νk, πk, μk1 , μk2 , ηk

)
such that the Fritz–John conditions are satisfied:

∇L(αk, νk, πk, μk1 , μ
k
2 , ηk) = 0,

νkIk
g
≥ 0, μk

1,I−
Gk

≥ 0, μk
2,I−

Hk

≥ 0,

ηk
1,I+

Gk

≥ 0, ηk
2,I+

Hk

≥ 0,

(3.4)
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where

∇L(α, ν, π, μ1, μ2, η) = α∇f(x) +
∑
i∈Ig

νi∇gi(x) +
ne∑
j=1

πj∇hj(x)

−
∑
l∈I−

G

μ1,l∇Gl(x) +
∑
m∈I+

G

ηm(Hm − t)∇Gm(x)

−
∑
l∈I−

H

μ2,l∇Hl(x) +
∑
m∈I+

H

ηm(Gm − t)∇Hm(x).

The constraint
(
Gm(xk)− tk

) (
Hm(xk)− tk

) ≤ 0 is active, if one or both of the
functions Gm and Hm is equal to tk at xk. If there is no index such that both functions
Gm and Hm are equal to tk at xk, i.e, I−k = ∅, then the result is a consequence of
the Theorem 2.4, since the LICQ holds at xk for sufficiently large k. Consequently,
αk and the Lagrange multipliers

(
νk, πk, μk1 , μk2 , ηk

)
are unique. We now consider

the case when there exists at least one index m such that Gm(xk) = Gm(xk) =
tk, i.e, I−k �= ∅. The point xk is a stationary point of the NLP(tk), then xk is a
stationary point of NLPI(tk) for every I ∈ P(I−k ). Since x∗ satisfies MPCC-LICQ,
then from Lemma 3.1, the LICQ holds at xk for the problem NLPI(tk) for every
I ∈ P(I−k ). Lemma 3.2 implies that the Lagrange multipliers μ1,I−

k
and μ2,I−

k
vanish

and (νkIk
g
, μk

1,I−
Gk

, μk
2,I−

Hk

, ηk
1,I+

Gk

, ηk
2,I+

Hk

) are unique. Hence, the stationarity conditions

of the NLPI(tk) at xk are as follows:

∇L(1, νk, πk, μk1 , μk2 , ηk) = 0,
νkI

gk
≥ 0, μk

1,I−
Gk

≥ 0, μk
2,I−

Hk

≥ 0,

ηk
1,I+

Gk

≥ 0, ηk
2,I+

Hk

≥ 0,

μk
1,I−

k

= 0, μk
2,I−

k

= 0,

(3.5)

which implies that xk is a KKT point of the NLP(tk).
We give in the following a limiting behavior of an approaching sequence of the

stationary points sequence for the regularized problem (NLP(t)).

4. Convergence results. In this section, we consider the limiting behavior of
problem (NLP(tk)) as tk → 0. We denote by F the feasible set of problem (1.1). The
next theorem establishes the relations between the solutions of the original problem
MPCC and those of the regularization NLP(t), under some classical MPCC condi-
tions. We start by giving a sufficient condition which guarantee the convergence to
B-stationary point of MPCC.

Definition 4.1. A sequence {xk} is asymptotically weakly nondegenerate, if
{xk} −→ x∗ as {tk} ↘ 0, and there is a t∗ > 0 such that for t ∈ (0, t∗) one has

−1 ≤ Gi(xk)
Hi(xk)

≤ 1, i ∈ (I−
Hk \ I+

Gk) ∩ I∗,
and

−1 ≤ Hi(xk)
Gi(xk)

≤ 1, i ∈ (I−
Gk \ I+

Hk) ∩ I∗.

This definition is similar to the one given by Liu and Sun [22] as well as Fukushima,
Liu, and Pang [11]. It means that for all i ∈ ((I−

Hk \ I+
Gk) ∪ (I−

Gk \ I+
Hk )) ∩ I∗ the
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functions Gi and Hi tend to zero with the same order. We note that the asymptotically
weak nondegeneracy condition is a key assumption for our convergence result. This
condition is not excessively stringent because it is implied by the lower level strict
complementarity, (I∗ = ∅), and the upper level strict complementarity, (μ∗

i,1μ
∗
i,2 �=

0, i ∈ I∗), and is weaker than both; see example 4 below.
Theorem 4.2. Let

{
tk
} ⊆ (0, +∞) be convergent to 0,

{
εk
}

be a nonnegative
convergent sequence with εk → 0, and xk be εk-stationary point of NLP(tk) for each
k. Let x∗ be any accumulation point of the sequence

{
xk
}
. We suppose that the

MPCC-LICQ holds at x∗. Then the following statements hold:
1. x∗ is M-stationary for the problem (1.1) with unique multipliers ν∗, π∗, μ∗

1, μ
∗
2.

2. If
{
xk
}

is asymptotically weakly nondegenerate, then x∗ is strongly stationary
for (1.1).

Proof. Suppose without loss of generality that
{
xk
} → x∗. Since all the func-

tions involved in the problem are continuous, and F is closed, hence x∗ ∈ F . Let(
νk, πk, μk1 , μk2 , ηk

)
be multipliers associated with xk. From εk-stationarity conditions

(2.7) at point xk, we have

νki gi(xk) ≥ (g(xk))T νk ≥ −εk,
μk1,l(Gl(xk) + tk) ≤ (G(xk) + tk · ec)Tμk1 ≤ εk,

μk2,r(Hr(xk) + tk) ≤ (H(xk) + tk · ec)Tμk2 ≤ εk,

ηkm(Gm(xk)− tk)(Hm(xk)− tk) ≥ [(Gk − tk · ec) ◦ (Hk − tk · ec)
]T

ηk ≥ −εk.
(4.1)
It follows that the multipliers associated with nonactive constraints are

νki = O(εk), i /∈ Igk ; ηkm = O(εk), m /∈ I−
GkHk ,

μk1,l = O(εk), l /∈ I+
Gk ; μk2,r = O(εk), r /∈ I+

Hk .

For sufficiently large k, we construct a matrix M(xk) whose columns consist of the
vectors

∇gi(xk), i ∈ Ig∗ ; ∇hj(xk), j = 1, . . . , ne,
∇Gl(xk), l ∈ IG∗ ; ∇Hr(xk), r ∈ IH∗ ,

this matrix converges to, as k → +∞, M(x∗) with columns

∇gi(x∗), i ∈ Ig∗ ; ∇hj(x∗), j = 1, . . . , ne,
∇Gl(x∗), l ∈ IG∗ ; ∇Hr(x∗), r ∈ IH∗ .

By (2.7), we have

(∇gk)T νk =
∑
i∈I

gk

νki ∇gki + O(εk),

(∇Gk)Tμk1 =
∑
l∈I+

Gk

μk1,l∇Gk
l + O(εk), (∇Hk)Tμk2 =

∑
r∈I+

Hk

μn2,r∇Hk
r + O(εk),

(∇Φk)T ηk =
∑

m∈I−
Gk

ηkm(Hk
m − tk)∇Gk

m +
∑

m∈I−
Hk

ηkm(Gk
m − tk)∇Hk

m + O(εk),

(4.2)
where Φk = (G(xk)− tk · ec) ◦ (H(xk)− tk · ec). Thus, taking into account these facts,
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we can write the first row of (2.7) as follows

−∇f(xk) =
∑
i∈I

gk

νki ∇gki +
ne∑
j=1

πkj∇hkj −
∑
l∈I+

Gk

μk1,l∇Gk
l −

∑
r∈I+H

μk2,r∇Hk
r

+
∑

m∈I−
Gk

ηkm(Hk
m − tk)∇Gk

m +
∑

m∈I−
Hk

ηkm(Gm
k − tk)∇Hk

m + O(εk),
(4.3)

we can restate the relation above as follows:

−∇f(xk) =
∑
i∈I

gk

νki ∇gi(xk) +
ne∑
j=1

πkj∇hj(xk)

−
∑

l∈(I+
GkHk\I−

GkHk )∩I∗

(μk1,l∇Gl(xk) + μk2,l∇Hl(xk))

−
∑

l∈I+
Gk∩I−

Hk∩I∗

[
μk1,l∇Gl(xk)− ηkl (Gl(xk)− tk)∇Hl(xk)

]
−

∑
l∈I+

Hk∩I−
Gk∩I∗

[
μk2,l∇Hl(xk)− ηkl (Hl(xk)− tk)∇Gl(xk)

]
−

∑
l∈(I−

Gk\I+
Hk )∩I∗

[−ηkl (Hl(xk)− tk)∇Gl(xk)− 0∇Hl(xk))
]

−
∑

l∈(I−
Hk\I+

Gk )∩I∗

[
0∇Gl(xk)− ηkl (Gl(xk)− tk)∇Hl(xk)

]
−

∑
l∈I+

Gk\IH∗

μk1,l∇Gl(xk)−
∑

l∈I−
Gk\IH∗

−ηkl (Hl(xk)− tk)∇Gl(xk))

−
∑

l∈I+
Hk\IG∗

μk2,l∇Hl(xk)−
∑

l∈I−
Hk\IG∗

−ηkl (Gl(xk)− tk)∇Hl(xk)

−
∑

l∈IG∗\(I+
Gk

∪I−
Gk

)

0∇Gl(xk)−
∑

l∈IH∗\(I+
Hk

∪I−
Hk

)

0∇Hl(xk) + O(εk)

= MT (xk)

⎛
⎜⎜⎝

νk

πk

δk

γk

⎞
⎟⎟⎠+ O(εk),

(4.4)

where δk, γk are given by

δk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μk1,I
μk1,II
−ηkIII ◦ (HIII(xk)− tk · eIII)
ηkIV ◦ (HIV (xk)− tk · eIV )
0V
μk1,V I
ηkV II ◦ (HV II(xk)− tk · eV II)
0V III

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(4.5)
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γk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μk2,I
−ηkII ◦ (GII(xk)− tk · eII)
μk2,III
0IV
ηkV ◦ (GV (xk)− tk · eV )
μk2,IX
ηkX ◦ (GX(xk)− tk · eX)
0XI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(4.6)

and
I = (I+

GkHk \ I−GkHk) ∩ I∗,
II = I+

Gk ∩ I−Hk ∩ I∗, III = I+
Hk ∩ I−Gk ∩ I∗,

IV = (I−
Gk \ I+

Hk ) ∩ I∗, V = (I−
Hk \ I+

Gk) ∩ I∗,
V I = I+

Gk \ IH∗ , V II = I−
Gk \ IH∗ ,

V III = I+
Hk \ IG∗ , IX = I−

Hk \ IG∗ ,
X = I∗ \ (I+

Gk ∪ I−Gk), XI = I∗ \ (I+
Hk ∪ I−Hk).

(4.7)

The matrix M(xk) converges to the matrix M(x∗) which has full column rank, because
the multipliers νk, πk, δk, γk are unique, see Theorem 3.3, and converge, respectively,
to the unique MPCC multipliers ν∗, π∗, μ∗

1, μ∗
2 at x∗. Thus, the weak stationarity

conditions of the MPCC (1.1) are satisfied at x∗. The rest of the proof is to show that
either μ∗

1,lμ
∗
2,l > 0, or μ∗

1,lμ
∗
2,l = 0 for each l ∈ I∗. For such l, we have five possible

cases, that is, the first five sets in (4.7):
In the first case, we have δkl = μkl,1 ≥ 0 and γkl = μkl,2 ≥ 0, then δkl → μ∗

l,1 ≥ 0
and γkl → μ∗

l,2 ≥ 0 as tk → 0. The second and the third case, we have, respectively,
(δkl = μk1,l ≥ 0, γkl = 2tkηkl ≥ 0) and (δkl = 2tkηkl ≥ 0, γkl = μk2,l ≥ 0), then δkl and γkl
converge to the positive values.

In the fourth and the fifth case we have one of the two multipliers δkl or γkl is
equal to 0. Then δkl γ

k
l = 0. Consequently, x∗ is M-stationary.

The second statement follows immediately from the first claim. Indeed, under
the asymptotically weakly nondegenerate assumption we have, respectively, −tk ≤
Hl(xk) ≤ tk for l ∈ (I−

Gk \ I+
Hk ) ∩ I∗ and −tk ≤ Gl(xk) ≤ tk for l ∈ (I−

Hk \ I+
Gk) ∩ I∗.

Then, the multiplier formulas in the fourth and fifth case will be, respectively, δkl =
−ηkl (Hl(xk)− tk) ≥ 0, γkl = 0 and δkl = 0, γkl = −ηkl (Gl(xk)− tk) ≥ 0. Therefore, x∗

is strongly stationary for the original MPCC.
Remark. If the ULSC assumption is considered, the fourth and the fifth case in

the part (1) cannot occur, which yields that μ∗
l,1 ≥ 0 and μ∗

l,2 ≥ 0.
The asymptotically weak nondegeneracy hypothesis is not easy to bypass.
Example 3. The point (x, y) = (1, 0) is a solution of the program

min x2 − xy + 1
3y2 − 2x,

s.t.
x ≥ 0, y ≥ 0,
xy ≤ 0,

(4.8)

which is a strongly stationary point. However, the stationary points of the regularized
scheme (NLP(t))

min x2 − xy + 1
3y2 − 2x,

s.t.
x ≥ −t, y ≥ −t,
(x− t)(y − t) ≤ 0,
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are (x, y) = (1, 0) and (x, y) = (t, 3t
2 ). The first stationary point converges to the

optimal solution, while the second converges to (0, 0) which is M-stationary point
with multipliers μ1 = −2 of x ≥ 0 and μ2 = 0 of y ≥ 0. The point (t, 3t

2 ) is not an
asymptotically weak nondegenerate point.

The following example shows that the asymptotically weak nondegeneracy condi-
tion is weaker than the upper level strict complementarity condition employed in the
literature [15, 16, 28].

Example 4. The origin with multipliers (μ∗
1, μ

∗
2) = (0, 0) is the unique strongly

stationary point of the program

min (x + y)2 + y2,
s.t.

x + y ≥ 0, y ≥ 0,
y(x + y) ≤ 0.

(4.9)

We note that the upper level strict complementarity is not satisfied at (x∗, y∗) = (0, 0)
because μ∗

1μ
∗
2 = 0. For a small t > 0, the regularized problem NLP(t) of the program

(4.9) has (x, y, μ1, μ2, η) = (t, 0, 0, 0, 2) as a stationary point which satisfies the weak
nondegeneracy condition. The point (x, y, δ, γ) with δ = −η(y − t) = 2t and γ =
−η(x + y − t) = 0 converges to (x∗, y∗, μ∗

1, μ
∗
2) = (0, 0, 0, 0) as t tending to zero.

5. Characterization of attractors. In this section we describe a situation
where the sequence of local minimizers {xk} of NLP(tk) with {tk} ↘ 0 is attracted
to a local minimizer of the MPCC. Consider the following example:

min x(1 − y2),
s.t.

x ≥ 0, y ≥ 0,
xy ≤ 0.

The local and global minimizers of MPCC are the whole positive y-axis. However, the
stationary points of our regularized problem NLP(t), for a small value of t < 1, are

1. (x, y) = (t, −t), and (μ1, μ2, η) =
(
0, 2t2, 1−t2

2t

)
;

2. (x, y) = (t, 0), and (μ1, μ2, η) = (0, 0, 1/t);
3. (x, y) = (−t, t), and (μ1, μ2, η) = (1− t2, 0, t);

which all converge to the same point (x∗, y∗) = (0, 0). This shows that further condi-
tions, in addition to MPCC-LICQ, are necessary to guarantee that a local minimizer
is a limit point of a sequence of stationary point xk of NLP(t) with t = tk.

The next theorem shows that whether x∗ is a strict local minimum of the MPCC,
the regularization method may generate a convergent sequence

{
xk
}→ x∗. We denote

by B(x∗, r) the closed ball centered at x∗ with radius r.
Theorem 5.1. Let x∗ be a locally unique B-stationary point of the MPCC. Then,

there exists r > 0 and t̄ > 0 such that for each t ∈ (0, t̄] there exists a local minimum
of the regularized problem NLP(t) in the ball B(x∗, r).

Proof. Since x∗ is a strict local minimum of the MPCC, then there exists a r > 0
such that for all feasible point x �= x∗ of the MPCC in B(x∗, r), we have f(x∗) < f(x),
which implies that there exists a α > 0 such that

f(x∗) + α ≤ f(x),(5.1)

for all feasible point x which satisfies ‖x− x∗‖ = r. Now, we show that for any
β ∈ (0, α) there exists a t̄ > 0 such that for any t ∈ (0, t̄ ] we have

f(x∗) + β ≤ f(x),
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for any feasible point x for the regularization problem NLP(t) that lies on the bound-
ary of B(x∗, r). Suppose by contradiction that there exists a sequence of feasible
points

{
xk
}

of the regularized problem NLP(t), with t = tk, and a positive scalar γ
in (0, α) such that

f(xk) < f(x∗) + γ, for all k,

with
∥∥xk − x∗∥∥ = r. Let x̄ be a limit of the sequence

{
xk
}

as tk → 0. By the
continuity of the objective and constraint functions, the point x̄ is feasible for the
MPCC and we have

lim
k→∞

f(xk) = f(x̄).

Therefore,

f(x̄) ≤ f(x∗) + γ;

this yields

f(x̄) ≤ f(x∗) + γ < f(x∗) + α,

which is a contradiction with (5.1). Hence, for any β ∈ (0, α) there exists t̄ ∈ (0, t∗]
such that

f(x) ≥ f(x∗) + β,

for any t ∈ (0, t̄] and any feasible point x for the the regularization problem NLP(t)
with ‖x− x∗‖ = r. Thus

f(x) > f(x∗),

for any x feasible for the NLP(t) that lies on the boundary of B(x∗, r). Since x∗ is
feasible for the problem NLP(t) with ‖x− x∗‖ ≤ r and it is in the interior of B(x∗, r),
we conclude that the global minimum x(t) of the NLP(t) with ‖x− x∗‖ ≤ r lies in
the interior of B(x∗, r). Consequently, x(t) is a minimum local of the NLP(t) in the
interior of B(x∗, r).

We give now the sufficient condition for the sequence generated by the regulariza-
tion (1.4) to be attracted to a B-stationarity point x∗. In addition to MPCC-LICQ, we
assume that the MPCC satisfy the strong second-order sufficient condition (MPCC-
SSOSC) at x∗, as used in [28],

dT∇2
xxL(x∗, ν∗, π∗, μ∗

1, μ
∗
2)d > 0,

for every nonvanishing d with

∇xgi(x∗)T d = 0, i : ν∗
i > 0,

∇xh(x∗)Td = 0,
∇xGj(x∗)T d = 0, j : μ∗

1,j �= 0,
∇xHk(x∗)Td = 0, k : μ∗

2,k �= 0.

Theorem 5.2. Suppose that x∗ is a B-stationary point of the MPCC at which
MPCC-LICQ and MPCC-SSOSC hold. Let Θ be an infinite set of t in a sufficiently
small neighborhood of zero, and S(t), with t ∈ Θ, be a set of stationary points x(t) of
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(1.4) which are asymptotically weakly nondegenerate. Then, there exists r > 0 such
that ∅ �= S(t) ∩B(x∗, r) −→ x∗, as t ∈ Θ and t↘ 0.

Proof. Before starting the proof of the theorem, we mention that we showed
in Theorem 2.4 that MPCC-LICQ implies the LICQ holds at any feasible point of
NLP(t) for a small t > 0, except the points x such that Gl(x) = Hl(x) = t for some l.
But we showed in Theorem 3.3 if these points are stationary, the Lagrange multipliers
exist. The MPCC-LICQ and MPCC-SSOSC assumptions and the B-stationary imply
that x∗ is a strict local minimum point of MPCC [28]. It follows from Theorem 5.1
that there exist r > 0 and t̄ > 0 such that for each t ∈ (0, t̄ ] there exist a local
minimum of the regularized problem NLP(t) in the ball B(x∗, r). This implies that
S(t)∩B(x∗, r) �= ∅. Since the stationary points of NLP(t) are supposed asymptotically
weakly nondegenerate, it follows from Theorem 4.2 that the sequence of stationary
points of NLP(t) in the ball B(x∗, r) converges to a B-stationary point x̄ of MPCC;
thus x̄ = x∗.

Notice that if the ULSC assumption is supposed to hold at x∗, we have the
same result in the above theorem, since the ULSC implies the asymptotically weak
nondegeneracy condition.

6. Extension. In this section, we present a generalized scheme GNLP (t) of the
regularization NLP (t)

GNLP (t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(x)
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) ≥ τ1,lt,
Hl(x) ≥ τ1,lt,
(Gl(x) − τ2,lt)(Hl(x) − τ2,lt) ≤ 0,
l = 1, 2, . . . , nc,

where τ1 and τ2 are two constant vectors.
The advantage of this regularization is to find easily an initial point x0 strictly

feasible for GNLP(t) with t = t0. It suffices that x0 satisfies g(x0) < 0 and h(x0) = 0
and to choose the vectors τ1 and τ2 such that

τ1,l > −min
{

Gl(x0)
t0

,
Hl(x0)

t0

}
,

and

min
{

Gl(x0)
t0

,
Hl(x0)

t0

}
< τ2,l < max

{
Gl(x0)

t0
,
Hl(x0)

t0

}
,

l = 1, 2, . . . , nc.

(6.1)

We show that the convergence results of section 4 remain valid for this generalized
regularization. In fact, we adapt the proof of the Theorem 4.2 to this generalized
scheme, and the multipliers δ and γ will be written as follows:

δk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μk1,I
μk1,II
−ηkIII ◦ (HIII(xk)− tk · τ2,III)
ηkIV ◦ (HIV (xk)− tk · τ2,IV )
0V
μk1,V I
ηkV II ◦ (HV II(xk)− tk · τ2,V II)
0V III

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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γk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μk2,I
−ηkII ◦ (GII(xk)− tk · τ2,II)
μk2,III
0IV
ηkV ◦ (GV (xk)− tk · τ2,V )
μk2,IX
ηkX ◦ (GX(xk)− tk · τ2,X)
0XI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We show that either μ∗
1,l, μ

∗
2,l > 0, or μ∗

1,lμ
∗
2,l = 0 for each l ∈ I∗. To this end, we

have to prove it for each case of the five cases that we have. In the first case, we
have δkl = μkl,1 ≥ 0 and γkl = μkl,2 ≥ 0, then δkl → μ∗

l,1 ≥ 0 and γkl → μ∗
l,2 ≥ 0 as

tk → 0. In the second and third cases, we have, respectively, (δkl = μk1,l ≥ 0, γkl =
−ηkl (−τ1,l − τ2,l)tk ≥ 0) and (δkl = −ηkl (−τ1,l − τ2,l)tk ≥ 0, γkl = μk2,l ≥ 0). Since
τ1 and τ2 are chosen as in (6.1), then τ1 + τ2 ∈ Rnc

+ ; thus δkl and γkl converge
to the positive values. In the fourth and the fifth case we have either δkl = 0 or
γkl = 0. Then δkl γ

k
l = 0. Consequently, x∗ is M-stationary. Now, we suppose

that the sequence of stationary points of GNLP(t) satisfies the asymptotically weak
nondegeneracy condition. This implies that for each l ∈ (I−

Gk \ I+
Hk ) ∩ I∗ we have

δkl = −ηkl (Hl(xk) − τ2,lt
k) ≥ 0, γkl = 0 because −τ2,lt

k ≤ Hl(xk) ≤ τ2,lt
k, and for

each l ∈ (I−
Hk \ I+

Gk) ∩ I∗ we have δkl = 0, γkl = −ηkl (Gl(xk) − τ2,lt
k) ≥ 0 because

−τ2,lt
k ≤ Gl(xk) ≤ τ2,lt

k. Then, the multipliers in the fourth and fifth case are
positive, which implies that μ∗

l,1 ≥ 0 and μ∗
l,2 ≥ 0. Therefore, x∗ is a B-stationary

point for MPCC.

7. How to solve the regularization. In this section, we briefly present a
global algorithm for solving the regularization scheme, and we report some numerical
experiments on the tests of the MacMPEC collection.

7.1. Algorithm and formulation details. Our primary interest in this paper
is to propose a regularization method that possesses strong convergence properties
and enables us to compute a solution of the MPCC problem by solving a sequence of
nonlinear programs. We note that the geometric shape of the approximation region
Gl(x) ≥ −t, Hl(x) ≥ −t, (Gl(x) − t)(Hl(x) − t) ≤ 0 is a union of two boxes that
intersect at a point x which satisfies Gl(x) = Hl(x) = t; it would not be easy to apply
the interior-point approach for solving the regularized problem NLP(t) especially if
the initial point

(
x0, t0

)
is in one box and the solution is in the other one. In order

to demonstrate that our approach is useful from a practical point of view, we present
a general scheme of an algorithm which uses the active set method for solving the
regularization.

The formulation of the algorithm, Figure 7.1, is general and the rule for updating
the relaxation parameter t is not discussed yet. The classical update strategy is that
we solve the problem NLP(t) for each fixed t. The process is then repeated as t↘ 0.
However, the question is how a sequence of parameters

{
tk
}

can be updated such that
tk ↘ 0. To this end, we solve a penalization approach based on the regularization
NLP(t). By introducing the slack variables, the problem (1.1) can be equivalently
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Algorithm 1: General Scheme of a Practical Algorithm for MPCCs

Initialization: Choose a positive sequence {tk} −→ 0 and a stopping complementarity toler-

ance ε
′
. Let x0 be an initial feasible point of NLP(t0) and set k = 1.

Repeat
a). Choose stopping tolerance εk (stationarity tolerance);
b). Apply the active set algorithm to approximately solve the problem NLP(tk),

until the conditions (2.7) are satisfied for some xk with Lagrange multipliers
(νk , πk, μk

1 , μk
2 , ηk).

c). Let k ←− k + 1,
Until the stopping criterion for the MPCC holds.

Fig. 7.1. General description of the algorithm for solving (1.4).

written in the form

min f(x)
s.t.

g(x) + s = 0, s ≥ 0,
h(x) = 0,
Gl(x) − y1,l = 0, Hl(x) − y2,l = 0,
y1,l ≥ 0, y2,l ≥ 0,
y1,ly2,l ≤ 0,
l = 1, 2, . . . , nc.

(7.1)

This problem has the same properties as (1.1). Instead of solving (7.1), we solve the
following penalized problem:

min Ψr,ρ(x, y, s, t) = f(x) + 1
2rφ(x, y, s) + ρt

s.t.
s ≥ 0,
y1,l + t ≥ 0, y2,l + t ≥ 0,
(y1,l − t)(y2,l − t) ≤ 0,
l = 1, 2, . . . , nc,

(7.2)

where φ(x, y, s) = ‖(g(x) + s, h(x), G(x) − y1, H(x)− y2)‖2, with r and ρ are the
positive penalty parameters. The process is then to decrease r to zero and to increase
ρ to infinity, if necessary, which involves that the variable t decreases to zero. The
difference between the elastic mode [2, 10] and our formulation is in the nature of
the penalization and relaxation of some constraints. The strategy of the elastic mode
as in [1, 2] is to move the complementarity terms Gl(x)Hl(x) = 0, l = 1, 2 . . . , nc
from the constraints to the objective function, by adding an l1-penalty function and
relax the other constraints as follows: g(x) ≤ ζeni , ζeni ≥ h(x) ≥ −ζeni , where ζ
is the elastic variable which is also penalized. Our penalty method is applied to a
new regularization scheme which relaxes the complementarity constraints and keeps
them explicit as constraints. With our technique, the sequence of first-order points
(xk, tk) of the problem (1.4) has an accumulation point that is M-stationary under
MPCC-LICQ and strongly stationary if the penalty parameter ρk is bounded. The
similar convergence properties have been deduced with second-order solutions of the
regularized problem in the case of the elastic mode [2].

To solve the problem (7.2) we apply an active set method with a more flexible
updating of the penalty parameter ρ. The main steps performed by an active set
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Algorithm 2: Active set regularization approach for MPCCs

Step 0.: Set z0 = (x0, y0, s0, t0) with (x0, y0, s0, ) ∈ Rn × R2nc × Rni and t0 ∈ R+

an initial feasible point (y0, s0, t0) of (7.2). Choose an initial penalty parameters
r0 > 0, ρ0 > 0, constants σ > 0, m ≥ 1, τ, ζ ∈ (0, 1), κ ∈ (0, 1) and the stopping

tolerances ε > 0, ε
′

> 0. Let j = 0, k = 1.
Step 1. Starting from (x̃j , ỹj , s̃j , t̃j) = (xk, yk , sk, tk), using the active set method to

solve approximately the problem (7.2). If the iterate (x̃kj , ỹkj , s̃kj , t̃kj ) satisfies
the εk-stationary conditions of (7.2), go to the step 2. Otherwise,

If t̃kj > εk
relax and

t̃kj > ζ max
{

t̃kj−1, . . . , t̃kj−m
}

,(7.3)

then set ρk ← σρk .
(xk, yk, sk, tk) = (x̃kj , ỹkj , s̃kj , t̃kj ), j ← j + 1 and go to Step 1.

Step 2. Set (xk+1, yk+1, sk+1, tk+1) = (x̃kj , ỹkj , s̃kj , t̃kj ). If εk < ε and εk
relax < ε

′
, stop;

else set rk+1 = κrk, εk+1
relax = min

{
φk+1, τrk+1

}
and

ρk+1 =

{
σρk , if tk+1 ≤ εk

relax,
ρk, otherwise.

Let k ← k + 1, and go to Step 1.

Fig. 7.2. Description of the Active Set Algorithm for MPCC.

method, the inner algorithm, are as follows: (i) Determine the set of the active con-
straints W and the active submatrix. (ii) Define a descent direction, (iii) if some
relaxing rule allows it, relax one or more constraints leading to the computation of a
new direction, and (iv) perform a line search along the direction. For our case, this
algorithm is slightly modified to defineW . In particular, the relaxed complementarity
constraint (y1,l− t)(y2,l− t) ≤ 0 is considered active if one or both of its terms y1,l− t
and y2,l− t vanish and neither is considered in the maximum steplength computation.
Our updating strategy of the penalty parameter ρ is different from those used by the
classical penalty method. Indeed, the traditional penalty method updates ρ only after
the problem (7.2) is solved and the relaxation variable t is decreased sufficiently, while
in our algorithm, Figure 7.2, we use the information on the current relaxation vari-
able t and some previous iterations of the active set algorithm to update the penalty
parameter ρ. This strategy is used in the context of the interior-penalty method in
[20], and it is as follows: If the relaxation parameter t is relatively small according to
some tolerance εrelax, the penalty parameter ρ is not increased. Otherwise, we look
back at some previous iterations and check whether the current relaxation variable is
less than a fraction of the maximum value of the m previous iterations.

The analysis of the inner algorithm is beyond the scope of this paper. We assume
that the active set algorithm is always successful and algorithm 2 is able to proceed
to step 2 for each rk. To ensure the global convergence of the active set method we
used the constraint relaxation rule of Dembo and Sahi [7].

Next, we use the following notations to denote the active index set of the penalized
problem (7.2):

Isk =
{
i : ski = 0

}
, I±

yk
j

=
{
l : ykj,l ± tk = 0

}
, Iyk

j
=
{
l : ykj,l = 0

}
, j = 1, 2.

Now we show that as k → ∞, the εk-stationary points of (7.2) converge to a strong
stationary point of MPCC if the penalty parameter ρk is bounded.
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Proposition 7.1. Let {rk} and {ρk} be, respectively, a decreasing and a nonde-
creasing penalty parameter sequences with k, and let (xk, yk, sk, tk) be a εk-stationary
point of (7.2) for each (rk, ρk), with εk ↘ 0. Suppose that (x∗, y∗, s∗, t∗) is a clus-
ter point of {(xk, yk, sk, tk)} that is feasible for (7.1). Assume that the MPCC-LICQ
holds at x∗ for (7.1). Then,

1. x∗ is an M-stationary point for (1.1).
2. If {ρk} is bounded, then x∗ is a strong stationary point for (1.1).

Proof. The first part has been given by Theorem 4.2 but its proof will be
slightly modified. Without loss of generality, we assume that {(xk, yk, sk, tk)} →
(x∗, y∗, s∗, t∗) and {εk} → 0. Let (νk, μk1 , μk2 , ηk) be the Lagrange multipliers of
(7.2) at (xk, yk, sk, tk) for given ρk and rk. The εk-stationary conditions of (7.2)
at (xk, yk, sk, tk) are the following:

∇xf(xk) =
ni∑
i=1

− gi(xk) + ski
rk

∇xgi(xk) +
ne∑
j=1

−hj(xk)
rk

∇xhj(xk)

−
nc∑
l=1

Gl(xk)− yk1,l
rk

∇xGl(xk)−
nc∑
l=1

Hl(xk)− yk2,l
rk

∇xHl(xk) + O(εk),

(7.4)
ρk =

∑
l∈I+

yk
1

μk1,l +
∑
l∈I+

yk
2

μk2,l +
∑
l∈I−

yk
1

ηkl (y
k
2,l − tk) +

∑
l∈I−

yk
2

ηkl (y
k
1,l − tk) + O(εk),

(7.5)

μk1,l =
yk1,l −Gl(xk)

rk
+ O(εk), l ∈ I+

yk
1
,

μk2,l =
yk2,l −Hl(xk)

rk
+ O(εk), l ∈ I+

yk
2
,

−ηkl (y
k
2,l − tk) =

yk1,l −Gl(xk)
rk

+ O(εk), l ∈ I−
yk
1
,

−ηkl (y
k
1,l − tk) =

yk2,l −Hl(xk)
rk

+ O(εk), l ∈ I−
yk
2
,

νki =
gi(xk) + ski

rk
+ O(εk), i ∈ Isk .

(7.6)

By the same reasoning as in the proof of Theorem 4.2, the multipliers νk, δk, γk

converge, respectively, to the unique MPCC multipliers ν∗, δ∗, γ∗ of the problem
(7.1) at (x∗, y∗, s∗, t∗), and we also have

lim
k∈K⊆N

gi(xk) + ski
rk

+ O(εk) = ν∗
i , lim

k∈K⊆N

hj(xk)
rk

+ O(εk) = π∗
j ,

lim
k∈K⊆N

yk1,l −Gl(xk)
rk

+ O(εk) = δ∗l , lim
k∈K⊆N

yk2,l −Hl(xk)
rk

+ O(εk) = γ∗
l .

(7.7)

Thus, the limit point (x∗, y∗, s∗, t∗) is M-stationary for the problem (7.1). By the
feasibility assumption, we have t∗ = 0 and φ(x∗, y∗, s∗) = 0, which implies that
Iy∗1 = IG∗ , Iy∗2 = IH∗ , and Is∗ = Ig∗ . Therefore, x∗ is M-stationary point for the
problem (1.1).

2) Suppose that
{
ρk
}

is bounded, then there is a k̂ such that ρk = ρk̂ and tk̂ = 0
for all k ≥ k̂. Hence, for all k ≥ k̂, we have I+

yk
1

= I−
yk
1

and I+
yk
2

= I−
yk
2
, which implies
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Table 7.1

Solutions and optimal values of the problem (1.2).

ρ ρ1 = 0.25 ρ2 = 0.5 ρ∗ = 1

(z0, t0) (z1, t1) (z2, t2) (z∗, t∗)
f0 f1 f2 f∗

case 1 (−0.5, 0.5, 0.5) (0.69, 0.98, 0.69) (0.52, 1.00, 0.52) (0.00, 0.99, 0.00)
1.25 0.04653 0.11459 0.5

case 2 (−0.3, 0.5, 0.5) (0.69, 0.98, 0.69) (0.52, 1.00, 0.52) (0.00, 0.99, 0.00)
0.97 0.04658 0.11358 0.5

case 3 (0.4, 2, 0.5) (0.67, 0.98, 0.67) (0.51, 1.02, 0.51) (0.00, 0.99, 0.00)
0.68 0.05297 0.12201 0.5

case 4 (0.5, 0.5, 0.5) (0.64, 1.06, 0.64) (0.48, 0.92, 0.48) (0.00, 0.99, 0.00)
0.25 0.06652 0.13814 0.5

case 5 (0.5,−0.5, 0.5) (0.98, 0.69, 0.69) (1.00, 0.52, 0.52) (0.99, 0.00, 0.00)
1.25 0.04653 0.11459 0.5

case 6 (1, 0.5, 0.5) (1.06, 0.65, 0.65) (1.00, 0.49, 0.49) (0.00, 0.99, 0.00)
0.125 0.05908 0.12893 0.5

δkl = μk1,l − ηkl y2,k and γkl = μk2,l − ηkl y1,k. Equation (7.5) can be written as follows:

ρk − (
∑
l∈I

yk
1

δkl +
∑
l∈I

yk
2

γkl ) = 2(
∑
l∈I

yk
1

ηkl y
k
2,l +

∑
l∈I

yk
2

ηkl y
k
1,l) + O(εk).(7.8)

Then, the first part of the equation (7.8) will be bounded as k→ +∞, because
{
ρk
}

is
bounded and (ν∗, δ∗, γ∗) is bounded by MPCC-LICQ assumption. This implies that
the second part of (7.8) is bounded, for k ≥ k̂ sufficiently large. Since tk = 0 then, for
k ≥ k̂ sufficiently large, we have ηkl y

k
2,l = ηkl y

k
1,l = 0, for all l ∈ Iyk

1
∩ Iyk

2
. Hence, for

all k ≥ k̂ sufficiently large, δkl = μk1,l ≥ 0 and γkl = μk2,l ≥ 0 with l ∈ Iyk
1
∩ Iyk

2
. Thus,

we have δkl → δ∗l ≥ 0 and γkl → γ∗
l ≥ 0 for any l ∈ Iy∗1 ∩ Iy∗2 , so (x∗, y∗

1 , y∗
2 , s∗, 0) is

strongly stationary for the problem (7.2). By the feasibility assumption, the point x∗

is strongly stationary for (1.1).
We note that the cluster point of the stationary points generated by the regulariza-

tion method is feasible for the original problem (7.1), but this is not automatically true
for the penalty method (7.2). This seems unavoidable for exterior penalty methods.
A common assumption used to avoid infeasible cluster points is related to coercivity
conditions on the underlying functions.

7.2. Numerical illustrations. We wrote an experimental code implementing
Algorithm 2. No attempt to refine or optimize the code was made. The purpose
of this section is not to test the code, but to validate our theoretical convergence
results. Nevertheless, several problems from MacMPEC collection [19] are solved; see
Table 7.2 below. We first apply the algorithm to Example (1.2) with different values
(positions) of the starting point, and we show that, unlike the smooth regularizations
[8, 21, 28], our regularization is not attracted by the C-stationary point. The initial
parameters in algorithm are selected as ρ1 = 0.25, σ = 2, and εk = 2−k × 10−1. The
optimal solutions are (1, 0) and (0, 1). Our algorithm solves this problem successfully
at ρ∗ = 1 and does not make the change in the working set in cases 4 and 6, while in
the other cases there is only one change as illustrated in Table 7.1. (zk, tk) is the point
(x, y, s, t) at the kth iterate and fk the value of the objective function at this point.

These results confirm that the algorithm converges to a strong stationary point of
MPCC (1.2). For more illustrations, we chose some problems from MacMPEC collec-
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Table 7.2

Numerical results on some problems from MacMPEC collection.

Name n ni ne p f∗ φ∗ ρ∗ nbW
bard1 5 8 1 3 24.999 2.07e-10 64 9
bard3 6 8 3 1 −18.685 1.38e-06 128 7
bilevel3 11 13 6 3 −12.6842 0.28e-06 8 13
dempe 3 2 1 1 31.249 0.14e-06 8 3
design-c-1 12 9 6 3 1.8605 0.10e-07 8 8
design-c-4 22 23 10 8 0.17e-04 0.10e-07 64 9
desilva 6 8 2 2 −1.000 0.20e-07 2 6
ex9.2.1 10 14 5 4 24.98265 0.22e-06 32 17
ex9.2.2 9 14 4 3 99.98847 0.70e-06 16 18
ex9.2.3 14 21 8 4 4.99579 0.40e-05 16 22
ex9.2.4 8 9 5 2 0.49750 0.30e-06 2 9
ex9.2.5 8 11 4 3 4.96044 0.40e-04 4 9
ex9.2.6 16 22 6 6 −1.25251 0.30e-05 4 28
ex9.2.7 10 14 5 4 24.82729 0.80e-04 32 17
ex9.2.8 6 9 3 2 1.49951 0.90e-06 2 14
ex9.2.9 9 13 5 3 1.99583 0.11e-04 2 13
gnash10 13 26 4 8 −230.8742 0.99e-05 128 65
gnash11 13 26 4 8 −129.9389 0.529e-06 256 69
gnash12 13 26 4 8 −36.9331 0.10e-07 256 32
gnash13 13 26 4 8 −7.0629 0.24e-06 256 49
jr1 2 2 0 1 0.48198 0.33e-05 2 2
jr2 2 2 0 1 0.49726 0.74e-05 2 2
kth1 2 3 0 1 0.0 0.10e-15 2 1
kth2 2 3 0 1 0.0 0.10e-15 2 1
kth3 2 3 0 1 0.5 0.10e-15 2 1
nash1 6 8 2 2 0.00 0.10e-07 16 4
outrata31 5 10 0 4 3.2064 0.38e-06 4 13
outrata32 5 10 0 4 3.4439 0.68e-05 8 10
portfl-i-1 87 98 13 12 0.69e-04 0.69e-04 4096 36
qpec-100-1 105 202 0 100 0.1222 0.26e-04 256 105
qpec-100-4 120 204 0 100 −3.189 0.12e-04 256 215
qpec-200-2 220 404 0 200 −24.307 6.22e-04 160 208
ralph2 2 3 0 1 0.0 0.10e-15 2 1
scholtes1 3 3 0 1 2.00 0.171e-27 2 3
scholtes2 3 3 0 1 14.98522 0.61e-07 4 1
scholtes3 2 3 0 1 0.0 0.10e-15 4 1
scholtes4 3 5 0 1 1 0.12e-04 4096 5
scholtes5 3 5 0 1 1.0 0.10e-15 4 4
stackelberg 3 5 1 1 −3267.37490 0.90e-04 8 4

tion [19]; these problems are transformed in the form (7.2) and coded in Scilab [27].
Table 7.2 summarizes the results, where n, ni, ne, and p are the numbers of variables,
general inequality constraints, general equality constraints, and complementarity con-
straints, respectively. f∗ is the optimal value of the objective function at the solution.
φ∗ measures the feasibility residual in the optimal point (x∗, y∗, s∗, t∗). ρ∗ is the value
of the penalty parameter when the algorithm terminates; we start with ρ0 = 1. The
last column, nbW , indicates the number of working set changes.

We note from Table 7.2 that algorithm 2 does well on almost all problems of
relatively small and medium sizes. In particular, algorithm 2 converges to an approx-
imate strong stationary point of MPCC for all the solved problems except ex9.2.2
and Scholtes4 which do not possess a strong stationary point. The algorithm has
trouble with problem ex9.2.2, and it was unable to reach the accuracy. These first
numerical results are interesting since they confirm our theoretical convergence prop-
erties and show that the algorithm based on the active set approach seems a relevant
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Table 7.3

Solutions and optimal values of the problem (7.9).

iteration (x1, x2, x3, t) PR φ Ψr,ρ maxλ ρ
1 (−0.86, 0.99, 0.00, 0.86) 0.68000 0.15e-04 0.223 0.55 0.1
2 (−0.99, 0.99, 0.00, 0.99) 0.62e-04 0.10e-05 0.4 1.00 0.4
3 (−0.99, 0.99, 0.00, 0.99) 0.62e-03 0.10e-04 0.8 1.00 0.8
4 (−0.00, 0.99, 0.00, 0.00) 0.40e-01 0.40e-06 0.99 26.1 51.2
5 (−0.00, 0.99, 0.00, 0.00) 0.10e-07 0.10e-08 0.99 26.1 51.2

way to overcome the absence of constraint qualification at degenerate points of the
regularized problem.

7.3. Discussion. In this subsection, we discuss the active set method applied
to the original formulation of MPCC and the proposed regularization, and we ex-
plain that the method does not encounter the difficulty with the degenerate points
of our regularization. We also discuss briefly the active set method related to the
decomposition method.

The nonregularity of the feasible points of MPCC (1.1) has two major drawbacks
on the direct application of the active set method. On the one hand, the set of the
Lagrange multipliers may be empty, and on the other hand, the linearization of the
constraints can be inconsistent arbitrarily close to a stationary point as the following
example illustrates:

min x1 + x2

s.t.
x2

2 − 1 ≥ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

(7.9)

Its solution is x∗ = (0, 1) with NLP multipliers ν∗ = 0.5 of x2
2 − 1 ≥ 0, μ∗

1 = 1 of
x1 ≥ 0, and η∗ = 0 of x1x2 ≤ 0. This solution is a strongly stationary point of (7.9).
The linearization of the constraints about a point x0 = (ε1, 1 − ε2), with ε1, ε2 > 0,
close to the solution x∗ gives a quadratic program (QP) that is inconsistent, see [10].
To overcome this difficulty the authors modified the pure SQP method by including
a restoration phase that can be invoked if QP is inconsistent. This procedure allows
one to find a next iterate xnext with xnext1 xnext2 = 0, but the convergence results
established are of a local nature and the global convergence is not fully explored in
[10]. By starting with the initial point (x1, x2, s, t) = (1, 0.5, 1, 0.5), Algorithm 2 finds
the optimal solution of (7.9) in four iterations. Table 7.3 summarizes the results given
by the algorithm where the notations PR and maxλ, respectively, mean the primal
residual and the maximum of the Lagrange multipliers.

The global convergence of SQP algorithm with elastic mode has been studied in
[2]. It was shown that the generated sequence has an accumulation point which is
C-stationary under MPCC-LICQ and M-stationary point if the generated sequence
is a sequence of inexact second-order points. In contrast, without second-order as-
sumptions, the sequence generated by our approach has a cluster point which is M-
stationary under the MPCC-LICQ and strongly stationary if the penalty parameter
ρ is bounded.

In contrast to the MPCC formulation, we showed that the Lagrange multipliers
exist at any feasible point z = (x, y, s, t) of the regularization scheme (1.5) and they are
unique for all feasible points z such that (y, t) /∈ Dy = {(y, t)|∃l : yi,l − t = 0, i = 1, 2}.
Therefore, the active set method behaved well with the proposed regularization. In
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the degeneracy case, Dy �= ∅, the set of the Lagrange multipliers corresponding to the
points z such that (y, t) ∈ Dy is unbounded, but this lack of regularity cannot create
problems when applying the active set method. Indeed, let z be a stationary point
for the problem (7.2) such that (y, t) ∈ Dy, and we assume without loss of generality
that there is a unique l0 such that y1,l0 − t = y2,l0 − t = 0. In this case we have
μ1,l0 = μ2,l0 = 0 and regardless the value of the ηl0 the quantities ηl0(y1,l0 − t) and
ηl0(y2,l0 − t) vanish. Therefore, equations (7.4) and (7.5) become as follows:

∇xf(x) =
ni∑
i=1

− gi(x) + si
r

∇xgi(x) +
ne∑
j=1

−hj(x)
r
∇xhj(x)

−
nc∑

l=1,l 
=l0

Gl(x)− y1,l

r
∇xGl(x)− Hl(x)− y2,l

r
∇xHl(x) + O(ε),

ρ =
∑
l∈I+

y1

μ1,l +
∑
l∈I+

y2

μ2,l +
∑

l∈I−
y1\{l0}

ηl(y2,l − t) +
∑

l∈I−
y2\{l0}

ηl(y1,l − t) + O(ε).

Thus, the relaxed constraints related to the complementarity constraint l0 do not
appear in the stationarity conditions of the penalized problem (7.2). This means that
the point z, with y1,l0 − t = y2,l0 − t = 0, is a nondegenerate stationary point for a
relaxed problem

min Ψr,ρ(x, y, s, t) = f(x) + 1
2rφ(x, y, s) + ρt

s.t.
s ≥ 0,
y1,l + t ≥ 0, y2,l + t ≥ 0,
(y1,l − t)(y2,l − t) ≤ 0,
l ∈ {1, 2, . . . , nc} \ {l0} .

(7.10)

Consequently, the degenerate case of the penalization (7.2) can be treated as a non-
degenerate case for the problem (7.10) which is a relaxed problem of (7.2). We note
that in all problems tested from MacMPEC collection [19], we did not encounter such
a case. We conjecture that this case may occur only for some pathological cases of
the MPCC problems. On the other hand, the inconsistency difficulty for solving the
regularization scheme (1.5) does not appear for the active set method and the problem
(7.9) is successfully solved.

Another aspect of the active set for MPCC is related to the idea of identify-
ing active constraints in inequality constrained optimization. It aims to specify two
subsets IG and IH with IG ∪ IH = {1, 2, . . . , nc} to decompose the complementar-
ity constraints according to IG and IH , and to compute a stationary point to the
subproblem:

min f(x)
s.t.

g(x) ≤ 0, h(x) = 0,
Gl(x) = 0, l ∈ IG, Gl(x) ≥ 0, l ∈ IH \ IG,
Hl(x) = 0, l ∈ IH , Hl(x) ≥ 0, l ∈ IG \ IH .

However, the important question is how to choose IG and IH effectively, especially
when the iterates are far from the solution. The linear case, of course, is very special
because correct identification is easier and can often be obtained (relatively) far from a
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solution, but in the nonlinear case, correct identification is in general quite local. Re-
cent developments in decomposition methods for the linear case show that the global
convergence to a M-stationary point can be guaranteed by assuming MPCC-LICQ
everywhere (uniform MPCC-LICQ) [13], while the convergence to B-stationary point
can be achieved under an additional assumption that every M-stationary point is iso-
lated [14]. We note that our regularization approach is not based on the decomposition
method.

8. Conclusion. In summary, the feasible domain of an MPCC is thin (no in-
terior) and nonconvex-nonsmooth. Usual regularization both smoothen and thicken
the domain. Smoothing introduces spurious solutions. We proposed a thick, but still
nonconvex-nonsmooth regularization that avoids such spurious solutions. Despite its
nonsmooth-nonconvex nature, we proved that our regularized problems possess KKT
multipliers, and regularized solutions are shown to converge to strong stationary points
under weaker assumptions than other published regularizations, in particular without
using any second order optimality condition. The proposed regularization has nei-
ther the inconsistency difficulty nor the decomposition problem and it is useful from
a practical standpoint. The numerical experiments confirm the convergence results
and demonstrate that the active set approach is an adequate method for solving this
regularization.
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STABILITY ANALYSIS OF OPTIMAL CONTROL PROBLEMS WITH
A SECOND-ORDER STATE CONSTRAINT∗
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Abstract. This paper gives stability results for nonlinear optimal control problems subject to a
regular state constraint of second-order. The strengthened Legendre–Clebsch condition is assumed
to hold, and no assumption on the structure of the contact set is made. Under a weak second-
order sufficient condition (taking into account the active constraints), we show that the solutions are
Lipschitz continuous w.r.t. the perturbation parameter in the L2 norm, and Hölder continuous in the
L∞ norm. We use a generalized implicit function theorem in metric spaces by Dontchev and Hager
[SIAM J. Control Optim., 36 (1998), pp. 698–718]. The difficulty is that multipliers associated with
second-order state constraints have a low regularity (they are only bounded measures). We obtain
Lipschitz stability of a “primitive” of the state constraint multiplier.
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1. Introduction. This paper deals with stability analysis of nonlinear optimal
control problems of an ordinary differential equation with a second-order state con-
straint. State constraints of second-order occur naturally in applications: For ex-
ample, in the problem of the atmospheric re-entry of a space shuttle, with the bank
angle as control, the constraints on the thermal flux, normal acceleration, and dy-
namic pressure are second-order state constraints; see [7]. Stability and sensitivity
analysis of solutions of optimal control problems is of high interest for the study of
numerical methods, such as, e.g., continuation algorithms (see [4]), and to analyze the
convergence of discretization schemes and obtain errors estimates (see, e.g., [10]).

For a class of general constrained optimization problems in Banach spaces, when
the derivative of the constraint is “onto” and a second-order sufficient condition holds,
Lipschitz stability of solutions and multipliers can be obtained by application of Robin-
son’s strong regularity theory [27] to the first-order optimality system. For optimal
control problems, this theory does not apply because of the well-known two-norm
discrepancy (see [24]). Stability results for optimal control problems using variants
of Robinson’s strong regularity in order to deal with the two-norm approach have
been obtained in [8, 17, 11] for control constraints, and [19] for mixed control-state
constraints.

Lipschitz stability results for state constraints of first-order have been obtained
by Malanowski [18] and Dontchev and Hager [9]. The difficulty of pure state con-
straints is the low regularity of multipliers, which are bounded Borel measures. These
multipliers can be identified with functions of bounded variation, and for first-order
state constraints, it is known that, under standard hypothesis, they are more regular
(they are Lipschitz continuous functions; see Hager [14]). This additional regularity of
multipliers is strongly used in the analysis in [18] and [9]. In those two papers, strong
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second-order sufficient conditions were used (which do not take into account the active
constraints). The sufficient condition was recently weakened by Malanowski [21, 20].

For higher-order state constraints, the multipliers associated with the state con-
straints are only measures, and are not continuous w.r.t. the perturbation parameter
(for the total variation norm). For this reason, the frameworks of [18] or [9] are
not directly applicable. The only stability and sensitivity results known for state
constraints of higher-order are based on the shooting approach; see Malanowski and
Maurer [22] and Bonnans and Hermant [5]. Such results require strong assumptions
on the structure of the contact set.

The main result of this paper is a stability result for regular second-order state
constraints, with no assumption on the structure of the contact set. The control is
assumed to be continuous and the strengthened Legendre–Clebsch condition to hold.
We use a generalized implicit function theorem in metric spaces by Dontchev and
Hager [9], applied to a system equivalent to the first-order optimality condition (the
alternative formulation). This formulation involves alternative multipliers that are
“integrals” of the original state constraint multipliers, and therefore are more regular.
We obtain Lipschitz continuity of solutions and alternative multipliers in the L2 norm,
and Hölder continuity in the L∞ norm, under a weak second-order sufficient condition
taking into account the active constraints.

This paper is organized as follows. In section 2, the problem, optimality con-
ditions, assumptions, and the admissible class of perturbations are introduced. In
section 3, the second-order sufficient optimality condition is presented. In section 4,
the main stability results for the nonlinear optimal control problem are given. Sec-
tion 5 is devoted to stability analysis of linear-quadratic problems, which is used to
prove the main theorem in section 6. Finally, the conclusion and comments are given
in section 7.

2. Preliminaries. We consider the following optimal control problem:

(P) min
(u,y)∈U×Y

∫ T

0

�(u(t), y(t))dt + φ(y(T ))(2.1)

subject to (s.t.) ẏ(t) = f(u(t), y(t)) for a.a. t ∈ [0, T ], y(0) = y0,(2.2)
g(y(t)) ≤ 0 ∀t ∈ [0, T ](2.3)

with the control and state spaces U := L∞(0, T ; Rm) and Y := W 1,∞(0, T ; Rn). The
following assumptions are assumed to hold throughout this paper and will not be
repeated in its various results.

(A0) The data � : R
m × R

n → R, φ : R
n → R (resp., f : R

m × R
n → R

n, g :
R
n → R) are C2 (resp., C3, C4) mappings, with locally Lipschitz continuous

second-order (resp., third-order, fourth-order) derivatives, and f is Lipschitz
continuous.

(A1) The initial condition y0 ∈ R
n satisfies g(y0) < 0.

We consider in this paper state constraints of second-order. This means that the
first-order time derivative g(1) : R

m × R
n → R of the constraint, defined by

g(1)(u, y) := gy(y)f(u, y),

does not depend on the control variable u, i.e., g
(1)
u ≡ 0 (hence, we write g(1)(y) =

g(1)(u, y)), and the second-order time derivative g(2) : R
m × R

n → R, defined by

g(2)(u, y) := g(1)
y (y)f(u, y),
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depends explicitly on the control, i.e., g
(2)
u �≡ 0.

Remark 2.1. For linear-quadratic control problems of type (5.1)–(5.4) (see sec-
tion 5), with dynamics given by ż(t) = A(t)z(t) + B(t)v(t) and state constraint by
C(t)z(t) + d(t) ≤ 0, the state constraint is of second-order means that C(t)B(t) ≡ 0
on [0, T ] and (Ċ(t) + C(t)A(t))B(t) �≡ 0.

Remark 2.2. In this paper the state constraint is assumed to be scalar-valued
for simplicity. The results are directly generalizable to several state constraints
g1, . . . , gr of second-order (and even of higher-order [23, 15] qi ≥ 2 for i = 1, . . . , r; see
Remark 2.3 further) under the assumption (see [23, 3]) that the gradients of the
nearly active constraints ∇ug(qi)

i (u, y) are uniformly linearly independent along the
trajectory.

Notation. We denote by subscripts Fréchet derivatives w.r.t. the variables u, y,
i.e., fy(u, y) = Dyf(u, y), fyy(u, y) = D2

yyf(u, y), etc. The derivative with respect
to the time is denoted by a dot, i.e., ẏ = dy

dt = y(1). The set of row vectors of di-
mension n is denoted by R

n∗. Adjoint or transpose operators are denoted by the
symbol �. The Euclidean norm is denoted by | · |. By Lr(0, T ) we denote the
Lebesgue space of measurable functions such that ‖u‖r := (

∫ T
0
|u(t)|rdt)1/r < ∞

for 1 ≤ r < ∞, ‖u‖∞ := supess[0,T ] |u(t)| < ∞. The space W s,r(0, T ) denotes the
Sobolev space of functions having their s first weak derivatives in Lr(0, T ), with the
norm ‖u‖s,r :=

∑s
j=0 ‖u(j)‖r. We denote by Hs the space W s,2. The space of con-

tinuous functions over [0, T ] and its dual space, the space of bounded Borel measures,
are denoted, respectively, by C[0, T ] andM[0, T ]. The set of nonnegative measures is
denoted by M+[0, T ]. The space of functions of bounded variation over [0, T ] is de-
noted by BV [0, T ], and the set of normalized BV functions vanishing at T is denoted
by BVT [0, T ]. Functions of bounded variation are without loss of generality (w.l.o.g.)
assumed to be right-continuous. We identify the elements ofM[0, T ] with the distribu-
tional derivatives dη of functions η in BVT [0, T ]. The support and the total variation
of the measure dη ∈ M[0, T ] are denoted, respectively, by supp(dη) and |dη|M. The
duality product overM[0, T ]× C[0, T ] is denoted by 〈dη, x〉 =

∫ T
0

x(t)dη(t). We de-
note by BX(x, ρ) (resp., BX) the open ball of the space X with center x and radius
ρ (resp., the open unit ball of the space X). We write Br for BLr , r = 2,∞.

We call a trajectory an element (u, y) ∈ U ×Y satisfying the state equation (2.2).
A trajectory satisfying the state constraint (2.3) is said to be feasible. The contact
set of a feasible trajectory is defined by

(2.4) I(g(y)) := {t ∈ [0, T ] : g(y(t)) = 0}.

Under assumption (A0), the mapping U → Y, u �→ yu, where yu is the unique solution
of the state equation (2.2), is well defined. This leads us to the following abstract
formulation of (P):

(2.5) min
u∈U

J(u), G(u) ∈ K,

with the cost function J(u) :=
∫ T
0

�(u, yu)dt + φ(yu(T )), the constraint mapping
G(u) := g(yu), and the constraint cone K := C−[0, T ] is the cone of continuous
functions taking nonpositive values over [0, T ]. The polar cone to K, denoted by K−,
is the set of nonnegative measuresM+[0, T ].

Finally, throughout this paper the time argument t ∈ [0, T ] is often omitted when
there is no ambiguity.
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2.1. Optimality conditions and assumptions. Let us first recall the well-
known first-order necessary optimality condition of problem (P). The Hamiltonian
H : R

m × R
n × R

n∗ → R is defined by

(2.6) H(u, y, p) := �(u, y) + pf(u, y).

We say that a feasible trajectory (u, y) is a stationary point of (P), if there exists
(p, η) ∈ BV ([0, T ]; Rn∗)×BVT [0, T ] such that

−dp = Hy(u, y, p)dt + gy(y)dη, p(T ) = φy(y(T )),(2.7)
0 = Hu(u(t), y(t), p(t)) a.e. on [0, T ],(2.8)

dη ∈ NK(g(y)).(2.9)

Here NK(g(y)) denotes the normal cone to K at point g(y) (in the sense of convex
analysis). If g(y) ∈ K, then NK(g(y)) is the set of nonnegative measures inM+[0, T ]
having their support included in the contact set (2.4); otherwise NK(g(y)) is empty.

The Lagrangian L : U ×M[0, T ]→ R of problem (2.5) is defined by

(2.10) L(u, η) := J(u) + 〈dη, G(u)〉 = J(u) +
∫ T

0

g(yu(t))dη(t).

We may write the first-order optimality condition as follows: (u, y = yu) is a stationary
point of (P) iff there exists η ∈ BVT [0, T ] such that

(2.11) DuL(u, η) = 0, dη ∈ NK(G(u)).

The costate p is then obtained in function of u, y = yu and η as the unique solution
in BV ([0, T ]; Rn∗) of the costate equation (2.7).

Robinson’s constraint qualification [25, 26] for problem (P) in abstract form (2.5)
is as follows:

(2.12) ∃ ε > 0, εBC[0,T ] ⊂ G(u) + DG(u)U −K.

This condition is equivalent to the existence of some v ∈ U such that

DG(u)v < 0 on I(g(y)).

It is well known that a local solution (weak minimum) of (P) satisfying (2.12) is a
stationary point of (P).

Alternative formulation. For the stability analysis, it will be convenient to write
the optimality condition using alternative multipliers η2 and p2, uniquely related to
(p, η) in the following way:

η1(t) :=
∫

(t,T ]

dη(s) = −η(t), η2(t) :=
∫ T

t

η1(s)ds,(2.13)

p2(t) := p(t)− η1(t)gy(y(t))− η2(t)g(1)
y (y(t)), t ∈ [0, T ].(2.14)

We see that η2 belongs to the set BV 2
T [0, T ], defined by

(2.15) BV 2
T [0, T ] := {ξ ∈W 1,∞(0, T ) : ξ(T ) = 0, ξ̇ ∈ BVT [0, T ]}.

Define the alternative Hamiltonian H̃ : R
m × R

n × R
n∗ × R→ R by

(2.16) H̃(u, y, p2, η2) := H(u, y, p2) + η2g(2)(u, y),
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where H is the classical Hamiltonian (2.6). Using these alternative multipliers,
it is not difficult to see by a direct calculation (see [23] or [3, Lemma 3.4]) that
a feasible trajectory (u, y) is a stationary point of (P) iff there exists (p2, η2) ∈
W 1,∞(0, T ; Rn∗)×BV 2

T [0, T ] such that

−ṗ2 = H̃y(u, y, p2, η2), p2(T ) = φy(y(T )),(2.17)

0 = H̃u(u, y, p2, η2) a.e. on [0, T ],(2.18)
dη̇2 ∈ NK(g(y)).(2.19)

The definition of these multipliers p2, η2 is inspired by the ones used in the alternative
formulation for the shooting algorithm (see [23, 15, 22, 5]) though p2, η2 are continuous
over [0, T ] while the ones in the shooting algorithm have jumps.

Remark 2.3. The results of this paper have a natural generalization to a state
constraint of higher-order q > 2, considering in the analysis alternative multipliers
(ηq, pq) of order q defined below and the resulting alternative formulation of optimality
condition of order q. These alternative multipliers of order q, ηq ∈ BV q

T [0, T ] with

BV q
T [0, T ] := {ξ ∈ W q−1,∞(0, T ) : ξ(j)(T ) = 0 ∀j = 0, . . . , q − 2, ξ(q−1) ∈ BVT [0, T ]}

and pq ∈W 1,∞(0, T ; Rn∗) are defined by

η1(t) :=
∫

(t,T ]

dη(s), ηj(t) :=
∫ T

t

ηj−1(s)ds, j = 2, . . . , q,

pq(t) := p(t)−
q∑
j=1

ηj(t)g(j−1)
y (y(t)).

Assumptions. Let (ū, ȳ) be a local solution of (P). We denote by Ω := I(g(ȳ))
the contact set of the trajectory (ū, ȳ), and for a small σ > 0, let Ωσ denote a
neighborhood of the contact set

(2.20) Ωσ := {t ∈ [0, T ] : dist{t, Ω} < σ}.

We assume that (ū, ȳ) satisfies the assumption below.
(A2) The state constraint is a regular second-order state constraint; i.e., g

(1)
u ≡ 0

and

(2.21) ∃ β, σ > 0, |g(2)
u (ū(t), ȳ(t))| ≥ β for a.a. t ∈ Ωσ.

In view of (A1), it will be assumed w.l.o.g. in what follows that σ is small enough so
that

(2.22) Ωσ ⊂ [a, T ] for some a > 0.

Given v ∈ Lr(0, T ; Rm), 1 ≤ r ≤ ∞, we denote by zv the unique solution in
W 1,r(0, T ; Rn) of the linearized state equation

(2.23) żv(t) = fy(ū(t), ȳ(t))zv(t) + fu(ū(t), ȳ(t))v(t) a.e. on [0, T ], zv(0) = 0.

Note that the derivative of the constraint mapping is given by DG(ū)v = gy(ȳ)zv.
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Lemma 2.4. Let (ū, ȳ) be a feasible trajectory of (P) satisfying (A2). Then for
all r ∈ [1, +∞] and all ε ∈ (0, σ), with the σ of (2.21) satisfying (2.22), the linear
mapping

(2.24) Lr(0, T ; Rm)→W 2,r(Ωε), v �→ (gy(ȳ(·))zv(·))|Ωε ,

where |Ωε denotes the restriction to the set Ωε, is onto, and therefore has a bounded
right inverse by the open mapping theorem.

If u is continuous over [0, T ], then Lemma 2.4 is satisfied with ε = σ.
Proof. We recall only the main ideas of the proof, given in [3, Lemma 2.2]. We

have that

d
dt
{gy(ȳ(t))zv(t)} = g(1)

y (ȳ(t))zv(t),

d2

dt2
{gy(ȳ(t))zv(t)} = g(2)

y (ū(t), ȳ(t))zv(t) + g(2)
u (ū(t), ȳ(t))v(t).

Since by (A1) and hypothesis (2.21), g
(2)
u (ū(t), ȳ(t)) is nonsingular on a left neighbor-

hood of Ωε, the result follows from Gronwall’s lemma.
By the above lemma, assumption (A2) (together with (A1)) implies that (ū, ȳ)

satisfies Robinson’s constraint qualification (2.12), and hence (ū, ȳ) is a stationary
point of (P), with multipliers (p̄, η̄). Moreover, Lemma 2.4 implies that the multipliers
(p̄, η̄) associated with (ū, ȳ) are unique. We assume, in addition, the following:

(A3) ū is continuous on [0, T ], and the strengthened Legendre–Clebsch condition
holds:

(2.25) ∃ α > 0, v�Huu(ū(t), ȳ(t), p̄(t))v ≥ α|v|2 ∀t ∈ [0, T ] ∀v ∈ R
m.

Remark 2.5. A stronger assumption than (2.25), which implies the continuity of
ū (see [3, Proposition 3.1]), is the uniform strong convexity of the Hamiltonian:

∃ α > 0, v�Huu(û, ȳ(t), p̄(t))v ≥ α|v|2 ∀t ∈ [0, T ] ∀û, v ∈ R
m.

Denote by p̄2 and η̄2 the alternative multipliers related to p̄ and η̄ by (2.13)–(2.14).
Assumption (2.25) can be rewritten, using the alternative multipliers p̄2 and η̄2 instead
of p̄ and η̄ and the alternative Hamiltonian (2.16), by

(2.26) ∃ α > 0, v�H̃uu(ū(t), ȳ(t), p̄2(t), η̄2(t))v ≥ α|v|2 ∀t ∈ [0, T ] ∀v ∈ R
m.

Lemma 2.6. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3). Then
ū ∈W 1,∞(0, T ; Rm).

Proof. By (A3), implying (2.26), and the implicit function theorem applied to
relation (2.18), there exists a C1 function Υ such that ū(t) = Υ(ȳ(t), p̄2(t), η̄2(t)).
Since ȳ, p̄2, η̄2 ∈W 1,∞, it follows from the chain rule that ū ∈W 1,∞.

Remark 2.7. More precisely, we have that under the assumptions of Lemma 2.6,
ū ∈ BV 2([0, T ]; Rm), where BV 2[0, T ] := {u ∈ W 1,∞(0, T ) : u̇ ∈ BV [0, T ]}. Indeed,
differentiation of (2.18) w.r.t. time shows that (omitting arguments (ū, ȳ, p̄2, η̄2))

0 = H̃uu ˙̄u + H̃uyf − H̃yfu + ˙̄η2g(2)
u .

Since ˙̄η2 = η̄ ∈ BVT [0, T ] and H̃uu is uniformly invertible by (2.26), we obtain the
result.
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2.2. Perturbed optimal control problem. We consider perturbed problems
in the following form:

(Pμ) min
(u,y)∈U×Y

∫ T

0

�μ(u(t), y(t))dt + φμ(y(T ))(2.27)

s.t. ẏ(t) = fμ(u(t), y(t)) a.e. on [0, T ], y(0) = yμ0 ,(2.28)
gμ(y(t)) ≤ 0 ∀t ∈ [0, T ].(2.29)

Here μ is the perturbation parameter, belonging to an open subset M0 of a Banach
space M .

Definition 2.8. We say that (Pμ) is a stable extension of (P), if the following
hold:

(i) There exists μ̄ ∈M0 such that (P μ̄) ≡ (P).
(ii) The mappings R

m × R
n × M0 → R, (u, y, μ) �→ �μ(u, y); R

n × M0 → R,
(y, μ) �→ φμ(y); M0 → R

n, μ �→ yμ0 (resp., R
m×R

n×M0 → R
n, (u, y, μ) �→ fμ(u, y);

R
n ×M0 → R, (y, μ) �→ gμ(y)) are of class C2 (resp., C3, C4), with locally Lipschitz

continuous second-order (resp., third-order, fourth-order) derivatives, uniformly w.r.t.
μ ∈M0.

(iii) The dynamics fμ is uniformly Lipschitz continuous over R
m × R

n for all
μ ∈M0.

(iv) The state constraint is not of first-order, i.e., (gμ)(1)u (u, y) ≡ 0 for all (u, y, μ) ∈
R
m × R

n ×M0.
Given a stable extension (Pμ) and (u, μ) ∈ U ×M0, we denote by yμu the unique

solution in Y of the state equation (2.28), and we have the abstract formulation of
(Pμ)
(2.30) min

u∈U
Jμ(u), Gμ(u) ∈ K,

with Jμ(u) :=
∫ T
0

�μ(u, yμu)dt + φμ(yμu(T )) and Gμ(u) := gμ(yμu). When we refer to
the data of the reference problem (P), we often omit the superscript μ̄.

3. Second-order sufficient optimality condition. Let (ū, ȳ) be a stationary
point of (P), with multipliers (p̄, η̄). Let V := L2(0, T ; Rm). The quadratic form
involved in the second-order optimality conditions, defined over V , is as follows:

(3.1)
Q(v) :=

∫ T

0

D2
(u,y)2H(ū, ȳ, p̄)(v, zv)2dt + φyy(ȳ(T ))(zv(T ), zv(T ))

+
∫ T

0

gyy(ȳ)(zv, zv)dη̄.

Recall that zv is the solution of the linearized state equation (2.23). Here the notation
D2

(u,y)2H(ū, ȳ, p̄)(v, zv)2 stands for D2
(u,y)(u,y)H(ū, ȳ, p̄)((v, zv), (v, zv)). The critical

cone C(ū) is the set of v ∈ V satisfying

gy(ȳ(t))zv(t) = 0 on supp(dη̄),(3.2)
gy(ȳ(t))zv(t) ≤ 0 on I(g(ȳ)) \ supp(dη̄).(3.3)

A sufficient second-order optimality condition for (P) is (see [2, Theorem 18] for
scalar-valued control and constraint and [3, Theorem 6.1] for vector-valued ones)

(3.4) Q(v) > 0 ∀v ∈ C(ū) \ {0}.
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When the strengthened Legendre–Clebsch condition (2.25) holds, (3.4) implies that
(ū, ȳ) is a local solution of (P) satisfying the second-order growth condition

(3.5) ∃ c, ρ > 0, J(u) ≥ J(ū) + c‖u− ū‖22 ∀u ∈ U : G(u) ∈ K, ‖u− ū‖∞ < ρ.

This condition involves two norms: L2 for the growth condition, and L∞ for the
neighborhood.

We will use, in the stability analysis, a natural strengthening of the sufficient
condition (3.4), omitting the inequality constraint (3.3) in the critical cone. So let
the extended critical cone Ĉ(ū) be defined as the set of v ∈ V satisfying (3.2) (and
hence, C(ū) ⊂ Ĉ(ū)). The strong second-order sufficient condition used in the stability
analysis is as follows:

(3.6) Q(v) > 0 ∀v ∈ Ĉ(ū) \ {0}.
Although we call the above condition the strong second-order sufficient condition (in
comparison with (3.4)), it takes into account the active constraints so it is weaker than
the second-order sufficient condition used in [9] that assumes the strict positivity of
Q over the whole space V \ {0}.

The strengthened Legendre–Clebsch condition (2.25) implies (see [6, Proposition
3.76(i)]) that the quadratic form Q is a Legendre form (see [16]), i.e., a weakly lower
semicontinuous (weakly l.s.c.) quadratic form with the property that if a sequence vn
weakly converges to v in L2 (vn ⇀ v) and if Q(vn)→ Q(v), then vn → v strongly.

Lemma 3.1. Let (ū, ȳ) be a stationary point of (P). An equivalent expression for
the quadratic form Q defined by (3.1), using the alternative multipliers (p̄2, η̄2) given
by (2.13)–(2.14) instead of (p̄, η̄) and the alternative Hamiltonian (2.16), is

(3.7) Q(v) =
∫ T

0

D2
(u,y)2H̃(ū, ȳ, p̄2, η̄2)(v, zv)2dt + φyy(ȳ(T ))(zv(T ), zv(T )).

Proof. Let v ∈ V . Denote by Q̃(v) the right-hand side of (3.7) and set Δ :=
Q̃(v) − Q(v). In view of the relations (2.13)–(2.14) between (p̄2, η̄2) and (p̄, η̄), we
have

Δ =
∫ T

0

(p̄2 − p̄)D2f(ū, ȳ)(v, zv)2dt +
∫ T

0

D2g(2)(ū, ȳ)(v, zv)2η̄2dt

−
∫ T

0

gyy(ȳ)(zv, zv)dη̄

= −
∫ T

0

η̄1gy(ȳ)D2f(ū, ȳ)(v, zv)2dt−
∫ T

0

η̄2g(1)
y (ȳ)D2f(ū, ȳ)(v, zv)2dt

+
∫ T

0

D2g(2)(ū, ȳ)(v, zv)2η̄2dt−
∫ T

0

gyy(ȳ)(zv, zv)dη̄.

The integration by parts formula in BV [12, p. 154] shows that (the calculus is anal-
ogous to Lemma 3.6 in [5])∫ T

0

gyy(ȳ)(zv, zv)dη̄ =
∫ T

0

d
dt
{gyy(ȳ)(zv, zv)}η̄1dt + [gyy(ȳ)(zv, zv)η̄1]T0

=
∫ T

0

{gyyy(ȳ)(f, zv, zv) + 2gyy(ȳ)(Df(ū, ȳ)(v, zv), zv)}η̄1dt

=
∫ T

0

g(1)
yy (ȳ)(zv, zv)η̄1dt−

∫ T

0

gy(ȳ)D2f(ū, ȳ)(v, zv)2η̄1dt.
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Similarly, we obtain that∫ T

0

g(1)
yy (ȳ)(zv, zv)η̄1dt =

∫ T

0

D2g(2)(ū, ȳ)(v, zv)2η̄2dt

−
∫ T

0

g(1)
y (ȳ)D2f(ū, ȳ)(v, zv)2η̄2dt.

Summing the two above equalities, we obtain that Δ = 0, which completes the
proof.

4. Stability analysis for the nonlinear problem. According to Definition 5.16
in [6], adapted to our optimal control framework, we consider the following definition
of uniform second-order growth condition.

Definition 4.1. Let (ū, ȳ) be a stationary point of (P). We say that the uniform
second-order (or quadratic) growth condition holds if, for all stable extensions (Pμ)
of (P), there exists c, ρ > 0 and a neighborhood N of μ̄, such that for any stationary
point (uμ, yμ) of (Pμ) with μ ∈ N and ‖uμ − ū‖∞ < ρ,

(4.1) Jμ(u) ≥ Jμ(uμ) + c‖u− uμ‖22 ∀u ∈ U : Gμ(u) ∈ K, ‖u− ū‖∞ < ρ.

The next proposition (proved in subsection 4.2) shows that the strong second-order
sufficient condition (3.6) implies the uniform second-order growth condition. There-
fore, if a stationary point for the perturbed problem (Pμ) exists, then the latter is
locally unique in a L∞-neighborhood of ū, and is a local solution of (Pμ).

Proposition 4.2. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A3)
and the strong second-order sufficient condition (3.6). Then the uniform second-order
growth condition holds.

The difficult part in the stability analysis here is to prove the existence of a sta-
tionary point for the perturbed problem. For some general optimization problems,
Robinson’s constraint qualification (2.12) and the uniform quadratic growth condi-
tion imply, for a certain class of perturbations, the existence of a stationary point for
the perturbed problem; see Bonnans and Shapiro [6, Theorem 5.17]. The proof uses
Ekeland’s variational principle [13]. However, this result does not apply to our non-
linear optimal control problem, due to the two-norms discrepancy, but it does apply
to linear-quadratic problems (see the proof of Theorem 5.4). For the general nonlin-
ear problem, in order to obtain the existence of a stationary point for the perturbed
problem, we need to use a variant of Robinson’s strong regularity theory [27].

The main result of this paper is the next theorem (proved in section 6).
Theorem 4.3. Let (ū, ȳ) be a local solution of (P), satisfying (A2)–(A3) and the

strong second-order sufficient condition (3.6). Then for all stable extensions (Pμ) of
(P), there exist c, ρ, κ, κ̃ > 0 and a neighborhood N of μ̄, such that for all μ ∈ N ,
(Pμ) has a unique stationary point (uμ, yμ) with ‖uμ− ū‖∞ < ρ and unique associated
alternative multipliers (p2,μ, η2,μ), and for all μ, μ′ ∈ N ,

‖uμ − uμ
′‖2, ‖yμ − yμ

′‖1,2, ‖p2,μ − p2,μ′‖1,2, ‖η2,μ − η2,μ′‖2 ≤ κ‖μ− μ′‖,(4.2)

‖uμ − uμ
′‖∞, ‖yμ − yμ

′‖1,∞, ‖p2,μ − p2,μ′‖1,∞, ‖η2,μ − η2,μ′‖∞ ≤ κ̃‖μ− μ′‖2/3.(4.3)

Moreover, (uμ, yμ) is a local solution of (Pμ) satisfying the uniform quadratic growth
condition (4.1).

The above theorem is obtained by application of a generalized implicit function
theorem by Dontchev and Hager [9] (Theorem 4.8 of this paper) to the alternative
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formulation (2.17)–(2.19) in suitable functional spaces described in subsection 4.3. In
order to show that the main assumption of this theorem is satisfied (assumption (iv)
of Theorem 4.8), we have to show that a perturbed linear-quadratic optimal control
problem has a unique solution which is Lipschitz continuous w.r.t. the parameter. For
this, we will use Proposition 4.2 (or more precisely, its analogous statement adapted
to linear-quadratic problems). Before giving the proof of Proposition 4.2, we first
need to study the stability of multipliers (Proposition 4.4).

4.1. Stability of multipliers. The next result shows that under the constraint
qualification (A2), the stability of multipliers could be deduced from the stability of
solutions. Given r ∈ [1, +∞], we denote by ‖ · ‖2,r∗ the norm of the dual space to
W 2,r(0, T ), i.e., for dη ∈M[0, T ] we have

‖dη‖2,r∗ := sup

{
| ∫ T

0
Φ(t)dη(t)|
‖Φ‖2,r , Φ ∈W 2,r(0, T ), Φ �≡ 0

}
.

Proposition 4.4. Let (ū, ȳ) be a stationary point of (P) satisfying (A2). Then
for every stable extension (Pμ) of (P), there exists ν > 0 such that for every station-
ary point (u, y) of (Pμ), with (unique) associated multipliers (p, η) and alternative
multipliers (p2, η2) given by (2.13)–(2.14), the following hold:

(i) If ‖μ− μ̄‖, ‖u− ū‖∞ < ν, then dη is uniformly bounded in M[0, T ].
(ii) There exists κ > 0 such that, for all ‖μ− μ̄‖, ‖u− ū‖∞ < ν, we have

‖dη − dη̄‖2,1∗, ‖η2 − η̄2‖∞ ≤ κ(‖u− ū‖∞ + ‖μ− μ̄‖).
Moreover, when ‖μ− μ̄‖, ‖u− ū‖∞ → 0:

(iii) dη weakly-* converges to dη̄ (dη
∗
⇀ dη̄) in M[0, T ];

(iv) η1 → η̄1 in L1;
(v) p2 and η2 converge uniformly to p̄2 and η̄2, respectively.
The proof of the above proposition uses the lemma below.
Lemma 4.5. For all 1 ≤ r < ∞, with r′ := r/(r − 1) (1′ = ∞), there exists a

positive constant C such that

(4.4) ‖ξ‖r′ ≤ C‖dξ̇‖2,r∗ ∀ξ ∈ BV 2
T [0, T ].

Proof. Let ϕ ∈ Lr(0, T ). Set Φ1(t) :=
∫ t
0 ϕ(s)ds and Φ(t) :=

∫ t
0 Φ1(s)ds. Then

Φ ∈ W 2,r(0, T ), and ‖Φ‖2,r ≤ C‖ϕ‖r, with C = 1 + T/ r
√

r + (T/ r
√

r)2. Since ξ(T ) =
ξ̇(T ) = 0, the integration by parts formula in BV [12, p. 154] implies that, for all
ξ ∈ BV 2

T [0, T ],

∫ T

0

ϕ(t)ξ(t)dt = −
∫ T

0

Φ1(t)ξ̇(t)dt =
∫ T

0

Φ(t)dξ̇(t).

Therefore,

‖ξ‖r′ = sup
ϕ∈Lr,ϕ �≡0

| ∫ T
0

ϕ(t)ξ(t)dt|
‖ϕ‖r ≤ C sup

Φ∈W 2,r ,Φ�≡0

| ∫ T
0

Φ(t)dξ̇(t)|
‖Φ‖2,r ,

which gives the result.
Proof of Proposition 4.4. Let (Pμ) be a stable extension of (P). Note first that

for ‖μ− μ̄‖ and ‖u − ū‖∞ small enough, assumptions (A1) and (A2) hold for (Pμ).
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This implies the uniqueness of the multipliers (p, η) associated with a stationary point
(u, y) of (Pμ). Since (ū, ȳ) satisfies Robinson’s constraint qualification (2.12), point
(i) follows from [6, Proposition 4.43].

Let us show (ii). Since (u, y = yμu) is a stationary point of (Pμ), we have that

DJμ(u) + DGμ(u)�dη = 0, dη ∈ NK(Gμ(u)).

It follows that DG(ū)�(dη̄ − dη) = DJμ(u)−DJ(ū) + (DGμ(u)−DG(ū))�dη, and
hence, for all v ∈ L1(0, T ),

(4.5) 〈dη̄ − dη, DG(ū)v〉 = (DJμ(u)−DJ(ū))v + 〈dη, (DGμ(u)−DG(ū))v〉.

Fix ε ∈ (0, σ) with the σ of (2.21) satisfying (2.22). By Lemma 2.4, the linear
mapping defined in (2.24) for r = 1 is onto. Since DG(ū)v = gy(ȳ)zv, by the open
mapping theorem, there exists a constant C1 > 0 such that, for all Φ ∈ W 2,1(0, T ),
there exists v ∈ L1(0, T ) such that DG(ū)v = Φ on Ωε and ‖v‖1 ≤ C1‖Φ‖2,1. For
‖μ−μ̄‖, ‖u−ū‖∞ small enough, the contact set I(gμ(y)), and hence the support of the
measure dη, are included in the set Ωε. Therefore, 〈dη− dη̄, DG(ū)v〉 = 〈dη− dη̄, Φ〉.
Consequently, by (4.5),

|〈dη − dη̄, Φ〉| ≤ |(DJμ(u)−DJ(ū))v| + |dη|M‖(DGμ(u)−DG(ū))v‖∞.

By point (i), |dη|M is uniformly bounded, and it is not difficult to check that

|(DJμ(u)−DJ(ū))v|, ‖(DGμ(u)−DG(ū))v‖∞ ≤ C(‖u− ū‖∞ + ‖μ− μ̄‖)‖v‖1,

where C denotes (possibly different) positive constants. Therefore, we obtain that

|〈dη − dη̄, Φ〉| ≤ C(‖u − ū‖∞ + ‖μ− μ̄‖)‖v‖1
≤ CC1(‖u− ū‖∞ + ‖μ− μ̄‖)‖Φ‖2,1.

Consequently, ‖dη − dη̄‖2,1∗ ≤ CC1(‖u− ū‖∞ + ‖μ− μ̄‖), and since, by Lemma 4.5,
‖η2 − η̄2‖∞ ≤ C‖dη − dη̄‖2,1∗, this proves (ii).

Now consider a sequence μn → μ̄, and let (un, yn) be a stationary point of (Pμn)
such that un → ū in L∞, with (unique) multipliers (pn, ηn) and alternative multipliers
(p2
n, η

2
n). Since W 2,1(0, T ) is dense in C[0, T ], we deduce easily from point (ii) that

dηn
∗
⇀ dη̄ in M[0, T ], which shows (iii). By the compactness theorem in BV [1,

Theorem 3.23], it follows that η1
n → η̄1 in L1, which shows (iv). Finally, since η2

is given by (2.13), (iv) implies that η2
n → η̄2 uniformly. By (2.17) and Gronwall’s

lemma, we conclude that p2
n → p̄2 in W 1,∞, which achieves the proof of (v).

4.2. The uniform second-order growth condition (proof of Proposition
4.2). The proof of Proposition 4.2 uses the auxiliary result below. Given A, B ⊂
[0, T ], denote by exc{A, B} the Hausdorff excess of A over B, defined by

(4.6) exc{A, B} := sup
t∈A

inf
s∈B
|t− s|,

with the convention exc{∅, B} = 0.
Lemma 4.6. Let dη̄ ∈ M[0, T ], and a sequence (dηn) ⊂M[0, T ] be such that dηn

weakly-* converges to dη̄ inM[0, T ]. Then en := exc{supp(dη̄), supp(dηn)} converges
to zero when n→ +∞.
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Proof. The result follows from classical compactness arguments. By contradiction,
assume that the result is false. Then there exist ε0 > 0 and a subsequence, still
denoted by dηn, such that for all n ∈ N

∗, en > ε0, i.e., there exists tn ∈ supp(dη̄)
such that for all s ∈ supp(dηn), |tn − s| > ε0. Since the sequence (tn)n∈N∗ ⊂ [0, T ]
is bounded, assume w.l.o.g. that tn → t̄ ∈ [0, T ]. Since supp(dη̄) is closed, t̄ ∈
supp(dη̄). For n large enough, |tn − t̄| < ε0/2, and hence, for all s ∈ supp(dηn),
|t̄ − s| ≥ |tn − s| − |tn − t̄| > ε0/2. Let ϕ be a continuous function, with support in
[t̄ − ε0/2, t̄ + ε0/2], and such that

∫ T
0 ϕdη̄ �= 0. Since dist{t̄, supp(dηn)} > ε0/2 for

all large enough n,
∫ T
0 ϕdηn = 0. But dηn

∗
⇀ dη̄, implying that

∫ T
0 ϕdηn →

∫ T
0 ϕdη̄,

which gives the desired contradiction.
Remark 4.7. We may equivalently reformulate Lemma 4.6 as follows: if dηn

weakly-* converges to dη̄ in M[0, T ], then

supp(dη̄) ⊂ lim sup
n→+∞

supp(dηn),

where the lim sup is in the sense of Painlevé–Kuratowski.
Proof of Proposition 4.2. We argue by contradiction. If the uniform second-

order growth condition does not hold, there exist a stable extension (Pμ), a sequence
μn → μ̄, a stationary point (un, yn) of (Pμn) such that un → ū in L∞, with multipliers
(pn, ηn) and alternative multipliers (p2

n, η
2
n), and a feasible point (ûn, ŷn) of (Pμn) such

that

(4.7) Jμn(ûn) < Jμn(un) + o(‖ûn − un‖22).
Introducing the Lagrangian of (Pμ), Lμ(u, η) = Jμ(u) + 〈dη, Gμ(u)〉, and using that
dηn ∈ NK(Gμn(un)), (4.7) implies that

Lμn(ûn, ηn)− Lμn(un, ηn) ≤ Jμn(ûn)− Jμn(un) < o(‖ûn − un‖22).
Set εn := ‖ûn − un‖2 → 0 and vn := ε−1

n (ûn − un). A second-order expansion of the
Lagrangian shows that Lμn(ûn, ηn) − Lμn(un, ηn) = ε2

nQμn(vn) + o(ε2
n), where the

quadratic form Qμn is defined like (3.1) for the stationary point (un, yn) of (Pμn).
Therefore, dividing the above inequality by ε2

n, we obtain that

(4.8) Qμn(vn) ≤ o(1).

Since ‖vn‖2 = 1 for all n, taking a subsequence if necessary, we may assume w.l.o.g.
that vn ⇀ v̄ weakly in L2 for some v̄ ∈ V when n → +∞. Since, by Lemma 3.1,
Qμn can also be expressed by (3.7), and (un, yn, p2

n, η
2
n) → (ū, ȳ, p̄2, η̄2) uniformly by

Proposition 4.4(v), and since vn is bounded in L2, it follows thatQμn(vn)−Q(vn)→ 0.
Therefore, writing that Qμn(vn) = Q(vn) + (Qμn(vn) − Q(vn)), and using that Q is
a Legendre form and hence weakly l.s.c., we obtain by (4.8) that

(4.9) Q(v̄) ≤ 0.

Moreover, since vn ⇀ v̄ weakly in L2, and (un, yn) → (ū, ȳ) uniformly, the lin-
earized state zn, the solution of

żn = fμn
y (un, yn)zn + fμn

u (un, yn)vn a.e. on [0, T ], zn(0) = 0

converges weakly to z̄ := zv̄ in H1, and hence uniformly. Since Gμn(ûn) ∈ K, we
have that 0 ≥ Gμn(ûn) − Gμn(un) = εnDGμn(un)vn + εnrn on supp(dηn), with
‖rn‖∞ = O(εn). Since DGμn(un)vn = gμn

y (yn)zn, it follows that

(4.10) gμn
y (yn)zn + rn ≤ 0 on supp(dηn).
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Since d
dtg

μn
y (yn(t))zn(t) = (gμn)(1)y (yn)zn is uniformly bounded over [0, T ], the func-

tions gμn
y (yn)zn are uniformly Lipschitz continuous over [0, T ]. Therefore,

sup
supp(dη̄)

gy(ȳ)z̄ ≤ ‖gy(ȳ)z̄ − gμn
y (yn)zn‖∞ + ‖(gμn)(1)y (yn)zn‖∞en + sup

supp(dηn)

gμn
y (yn)zn

≤ o(1) +O(en) +O(εn),

where en := exc{supp(dη̄), supp(dηn)} is defined by (4.6). Since dηn
∗
⇀ dη̄ by Propo-

sition 4.4(iii), it follows from Lemma 4.6 that en → 0. Therefore, we obtain that

(4.11) gy(ȳ)z̄ ≤ 0 on supp(dη̄).

In addition, by (4.7), DJμn(un)vn ≤ O(εn). Since DJμn(un)+DGμn(un)�dηn =
0, it follows that 〈dηn, DGμn(un)vn〉 =

∫ T
0

gμn
y (yn)zndηn ≥ O(εn). Since dηn

∗
⇀ dη̄

and gμn
y (yn)zn → gy(ȳ)z̄ uniformly, we obtain that

∫ T
0 gy(ȳ)z̄dη̄ ≥ 0. Using that

dη̄ ≥ 0, (4.11) implies that

gy(ȳ)z̄ = 0 on supp(dη̄),

i.e., v̄ ∈ Ĉ(ū). The strong second-order sufficient condition (3.6) and (4.9) imply then
that v̄ = 0. But then Q(v̄) = 0, and Q(vn)→ Q(v̄). Since Q is a Legendre form, we
deduce that vn → v̄ = 0 strongly in L2, contradicting that ‖vn‖2 = 1 for all n.

4.3. The strong regularity framework. We use the following generalized
implicit function theorem in metric spaces by Dontchev and Hager [9], which is a
variant of Robinson’s strong regularity [27].

Theorem 4.8 (see [9, Theorem 2.2]). Let X be a complete metric space, X̃ a
closed subset of X, W a linear metric space, Δ a subset of W , P a metric space, and
F : X × P → W , N : X → 2W , L : X → W . Assume that L is continuous and that
there exists (x̄, μ̄) ∈ X̃ × P such that the following hold:

(i) F(x̄, μ̄) ∈ N (x̄).
(ii) F(x̄, ·) is continuous at μ̄.
(iii) Ψμ := F(·, μ) − L(·) is strictly stationary at x = x̄, uniformly in μ near μ̄,

i.e., for all ε > 0, there exists ν > 0 such that if ‖xi − x̄‖X , ‖μ− μ̄‖ ≤ ν, i = 1, 2,

(4.12) ‖Ψμ(x1)−Ψμ(x2)‖W ≤ ε‖x1 − x2‖X .

(iv) For all δ ∈ Δ, there exists a unique solution x ∈ X̃ of

(4.13) δ ∈ L(x) −N (x),

and there exists λ > 0 such that, with xδ the unique solution associated with δ,

‖xδ − xδ′‖X ≤ λ‖δ − δ′‖W ∀ δ, δ′ ∈ Δ.

(v) F − L maps a neighborhood of (x̄, μ̄) into Δ.
Then for all λ+ > λ, there exist neighborhoods X of x̄ in X̃ and W of μ̄, such that
for each μ ∈ W, there exists a unique x ∈ X satisfying F(x, μ) ∈ N (x); moreover,
for each μi ∈ W, i = 1, 2, if xi denotes the x ∈ X associated with μi, then

(4.14) ‖x2 − x1‖X ≤ λ+‖F(x1, μ1)−F(x1, μ2)‖W .
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In [9], the theorem is stated with X̃ = X , but remains true if we replace the complete
metric space X by any closed subset X̃ of X , equipped with the metric of X , since
X̃ remains a complete metric space.

This theorem was used for stability analysis of optimal control problems subject
to first-order state constraints in [9]. In what follows, we describe a suitable framework
to apply Theorem 4.8 for second-order state constraints.

Remark 4.9. Our choice of functional spaces to apply Theorem 4.8 differs from
that of [9] or [18] in the spaces for the state constraint and state constraint multiplier.
Whereas in [9, 18] the state constraint is seen in W 1,∞, we consider here rather the
state constraint in the space of continuous functions C[0, T ]. Another natural choice
for the space of second-order state constraints would be W 2,∞ since the constraint
is “onto” in this space (Lemma 2.4). The reason for considering here the constraint
in C[0, T ] is to have multipliers in M[0, T ] instead of in the dual space of W 1,∞

or W 2,∞. For first-order state constraints it can be shown (see [14]) that the state
constraint multiplier η lies in W 1,∞ (and therefore a suitable choice for the state
constraint multiplier space is the space Lipk defined below), but this is no more true
for higher-order state constraints. Note that since W 2,∞ ⊂ W 1,∞ ⊂ C[0, T ] with
continuous and dense embeddings, and the constraint is “onto” in W 2,∞ by Lemma
2.4, the multipliers in the three possible formulations are one-to-one.

Notation. In order to apply Theorem 4.8 to prove Theorem 4.3 in sections 5 and
6, we use the following notation. Given k, l, r, �, k′ > 0, define the spaces

Lipk(0, T ) := {u ∈ W 1,∞(0, T ) : ‖u̇‖∞ ≤ k},
BV 2

T,l[0, T ] := {ξ ∈ BV 2
T [0, T ] : |dξ̇|M ≤ l},

X := Lipk(0, T ; Rm)×BV 2
T,l[0, T ],(4.15)

X̃ := {x = (u, ξ) ∈ X : ‖u− ū‖2 ≤ r},(4.16)
W := L2(0, T ; Rm∗)×H2(0, T )(4.17)

equipped with its standard norm ‖δ‖W := ‖γ‖2 + ‖ζ‖2,2 for δ = (γ, ζ) ∈W ,

Δ := {δ ∈ Lipk′(0, T ; Rm∗)×H2(0, T ), ‖δ‖W ≤ �},(4.18)
P : closed neighborhood of μ̄, contained in M0,

and mappings
• F : X × P →W ,

F(x, μ) :=
(

H̃μ
u (u, yμu , p2,μ

u,η2 , η2)
gμ(yμu)

)
,

where H̃μ is the alternative Hamiltonian (2.16) of (Pμ), yμu is the solution of
the state equation (2.28), and p2,μ

u,η2 is the solution of the alternative costate
equation (2.17) for (Pμ), i.e.,

(4.19) −ṗ2,μ
u,η2 = H̃μ

y (u, yμu , p2,μ
u,η2 , η

2) a.e. on [0, T ], p2,μ
u,η2(T ) = φμy (y

μ
u(T )).

• N : X → 2W , N (x) = {0} × (NK−(dη̇2) ∩H2(0, T )), where

NK−(dη̇2) =
{ {ϕ ∈ C−[0, T ] : 〈dη̇2, ϕ〉 = 0} if dη̇2 ≥ 0,
∅ otherwise.



118 AUDREY HERMANT

• L : X →W ,

(4.20) L(x) := F(x̄, μ̄)−DxF(x̄, μ̄)(x − x̄).

By Lemma 2.6, we have that (ū, η̄2) ∈ X for sufficiently large k, l.
Lemma 4.10. Equipped with the norm

(4.21) ‖(u, ξ)‖X := ‖u‖2 + ‖ξ‖2,
X is a complete metric space, and

(4.22) ‖u‖∞ ≤ max{
√

3/T‖u‖2, 3
√

3k‖u‖2/32 } ∀u ∈ Lipk(0, T ).

Proof. It was shown in [9, Lemma 3.2] that the space (Lipk(0, T ), ‖ · ‖2) is a
complete metric space, and the estimate (4.22) follows from [9, Lemma 3.1]. We show
now that (BV 2

T,l[0, T ], ‖ · ‖2) is complete as well. Let (ξn) be a Cauchy sequence in
BV 2

T,l[0, T ] (for the norm ‖ · ‖2). Since L2(0, T ) is complete, there exists ξ̃ ∈ L2(0, T )
such that ξn → ξ̃ in L2. Let us show that the limit point ξ̃ lies in BV 2

T,l[0, T ]. We
have that |dξ̇n|M ≤ l for all n, and since ξ̇n(T ) = 0, the sequence (ξ̇n) is bounded
in BV for the norm ‖η‖BV := ‖η‖1 + |dη|M. Therefore, by the compactness theorem
in BV [1, Theorem 3.23], there exists a subsequence ξψ(n) and ζ ∈ BV [0, T ] such
that dξ̇ψ(n)

∗
⇀ dζ weakly-* in M[0, T ] and ξ̇ψ(n) → ζ in L1. Moreover, using the

integration by parts formula in BV [12, p. 154], we obtain that

Tζ(T ) =
∫ T

0

(ζ(t) − ξ̇ψ(n)(t))dt +
∫ T

0

s(dζ(s)− dξ̇ψ(n)(s)) → 0,

and hence ζ(T ) = 0. Setting ξ̂(t) := − ∫ Tt ζ(s)ds, we have that ξ̂ ∈ BV 2
T [0, T ], and

ξψ(n) → ξ̂ in L∞ and a fortiori in L2. We deduce that necessarily, ξ̂ = ξ̃ ∈ BV 2
T [0, T ],

the whole sequence (dξ̇n) weakly-* converges to d ˙̃ξ in M[0, T ], and then

|d ˙̃
ξ|M ≤ lim inf |dξ̇n|M ≤ l.

This shows that ξ̃ ∈ BV 2
T,l[0, T ], and hence (BV 2

T,l[0, T ], ‖ · ‖2) is a complete metric
space. This achieves the proof.

Note that for all ξ ∈ BV 2
T,l[0, T ], we have that |dξ̇|M ≤ l, and since ξ̇(T ) = 0,

it follows that ‖ξ̇‖∞ ≤ l, and hence BV 2
T,l[0, T ] ⊂ Lipl(0, T ). Therefore, we deduce

from (4.22) that

(4.23) ‖ξ‖∞ ≤ max{
√

3/T‖ξ‖2, 3
√

3l‖ξ‖2/32 } ∀ξ ∈ BV 2
T,l[0, T ].

The space X̃ defined by (4.16) is a closed subset of X , and hence, by Lemma 4.10,
X̃ equipped with the norm of X (4.21) is a complete metric space. We need to work
with X̃ instead of X in order to obtain the uniqueness of a solution of (4.13) in
X̃, for small enough r > 0. The space of sufficiently smooth variations Δ ⊂ W , in
assumptions (iv) and (v) of Theorem 4.8, is defined by (4.18).

Given a stable extension (Pμ) of (P), our formulation is the following: For μ in
the neighborhood of μ̄, find x = (u, η2) ∈ X̃ solution of

(4.24) F(x, μ) ∈ N (x),

where F and N are defined as above. Then (u, yμu) is a stationary point of (Pμ) with
alternative multipliers (p2,μ

u,η2 , η2) iff x = (u, η2) is solution of (4.24).
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5. Stability analysis of linear-quadratic problems. The verification of as-
sumption (iv) of Theorem 4.8 is strongly related to stability analysis of linear-quadratic
optimal control problems with a second-order state constraint, which we study in this
section. Since these results have their own interest, they are stated independently of
the rest of this paper. The problem under consideration is of the form

(Pδ) min
(v,z)∈V×Z

1
2

∫ T

0

(v(t)�S(t)v(t) + 2v(t)�R(t)z(t) + z(t)�Q(t)z(t))dt(5.1)

+
∫ T

0

(a(t)z(t) + (b(t)− γ(t))v(t))dt + 1
2z(T )�Φz(T )(5.2)

s.t. ż(t) = A(t)z(t) + B(t)v(t) a.e. on [0, T ], z(0) = 0,(5.3)
C(t)z(t) + d(t)− ζ(t) ≤ 0 on [0, T ].(5.4)

The perturbation parameter is here δ = (γ, ζ) ∈W = L2(0, T ; Rm∗)×H2(0, T ), with
the norm ‖δ‖W = ‖γ‖2 + ‖ζ‖2,2. The control and state spaces for the linearized
problem are V := L2(0, T ; Rm) and Z := H1(0, T ; Rn). The matrix and vectors
S(·), R(·), Q(·), a(·), b(·), A(·), B(·), C(·), d(·), of appropriate dimensions, are Lipschitz
continuous functions of time. In addition, C(·) and d(·) lie in the space W 3,∞. The
matrix S and Q are symmetric. We assume, in addition, in this section that (recall
(A1))

(5.5) d(0) < 0.

Given v ∈ V , we denote by zv the unique solution in Z of the linearized state equation
(5.3). Then we may write (Pδ) as follows:

(Pδ) min
v∈V
J δ(v), Γδ(v) ∈ K,

with J δ(v) :=
∫ T
0
{ 1

2 (v�Sv + 2v�Rzv + z�v Qzv) + az +(b− γ)v}dt + 1
2zv(T )�Φzv(T ),

Γδ(v) := Czv + d− ζ, and K = C−[0, T ].
Assume that C(t)B(t) ≡ 0 on [0, T ] (state constraint of second-order), and define

the matrix

C1(t) := Ċ(t) + C(t)A(t), C2(t) := Ċ1(t) + C1(t)A(t), N2(t) := C1(t)B(t).

Then for all v ∈ V , we have that

d
dt
{C(t)zv(t)} = C1(t)zv(t),

d2

dt2
{C(t)zv(t)} = C2(t)zv(t) + N2(t)v(t).

The alternative multipliers (π2, η2) ∈ W 1,∞(0, T ; Rn∗) × BV 2
T [0, T ] for the linear-

quadratic problem are defined by

η1(t) :=
∫

(t,T ]

dη(s), η2(t) :=
∫ T

t

η1(s)ds,(5.6)

π2(t) := π(t)− η1(t)C(t) − η2(t)C1(t), t ∈ [0, T ].(5.7)

Let (v̄, z̄ = zv̄) be a stationary point of (P0), with multipliers (π̄, η̄) and alternative
multipliers (π̄2, η̄2). Denote the contact set by Ω := {t ∈ [0, T ] : C(t)z̄(t) + d(t) = 0},
and a neighborhood of the contact set by Ωσ := {t ∈ [0, T ] : dist{t, Ω} < σ} for σ > 0.
For linear-quadratic problems, assumptions (A2)–(A3) may be rewritten as follows:
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(Ã2) The state constraint is a regular second-order state constraint, i.e., C(t)B(t) ≡
0 on [0, T ], and there exists β, σ > 0 (σ satisfying (2.22)) such that

|N2(t)| ≥ β on Ωσ.

(Ã3) The matrix S(t) is uniformly positive definite over [0, T ], i.e.,

∃ α > 0, υ�S(t)υ ≥ α|υ|2 ∀t ∈ [0, T ] ∀υ ∈ R
m.

Note that by Remark 2.5, (Ã3) is equivalent to (A3). Assumption (Ã2), with (5.5),
implies the following (cf. Lemma 2.4).

Lemma 5.1. Assume that (Ã2) holds. Then there exists a positive constant c
such that for all ϕ ∈ H2(0, T ), there exists v ∈ V satisfying

(5.8) C(t)zv(t) = ϕ(t) on Ωσ and ‖v‖2 ≤ c‖ϕ‖2,2.
Therefore (Ã2) and (5.5) imply that Robinson’s constraint qualification holds, and
that the multipliers associated with (v̄, z̄) are unique.

Propositions 5.2 and 5.3 hold for a larger set of perturbations, more precisely for
δ = (γ, ζ) ∈ Ŵ , where

Ŵ := L2(0, T ; Rm)× C[0, T ],

equipped with its standard norm ‖δ‖Ŵ := ‖γ‖2 + ‖ζ‖∞. We have, of course, W ⊂ Ŵ
with continuous embedding. Identical to Proposition 4.4, we obtain the stability of
multipliers for linear-quadratic problems (with a slightly modified statement).

Proposition 5.2. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2). Then
there exists ν > 0 such that for every stationary point (v, z) of (Pδ), with (unique)
multipliers (π, η) and alternative multipliers (π2, η2) defined by (5.7)–(5.6), the fol-
lowing hold:

(i) If ‖δ‖Ŵ , ‖v − v̄‖2 < ν, then dη is uniformly bounded in M[0, T ].
(ii) There exists κ > 0 such that, for all ‖δ‖Ŵ , ‖v − v̄‖2 < ν, we have

‖dη − dη̄‖2,2∗, ‖η2 − η̄2‖2 ≤ κ(‖v − v̄‖2 + ‖δ‖Ŵ ).

Moreover, when ‖δ‖Ŵ , ‖v − v̄‖2 → 0:
(iii) dη weakly-* converges to dη̄ in M[0, T ];
(iv) η1 → η̄1 in L1;
(v) π2 and η2 converge uniformly to π̄2 and η̄2, respectively.

Second-order optimality conditions. Let Q̃ denote the quadratic part of the
cost J δ (independent of δ):

(5.9)
Q̃(v) = 1

2

∫ T

0

(v(t)�S(t)v(t) + 2v(t)�R(t)zv(t) + zv(t)�Q(t)zv(t))dt

+ 1
2zv(T )�Φzv(T ).

The strong second-order sufficient condition is

(5.10) Q̃(v) > 0 ∀v ∈ V \ {0} such that C(t)zv(t) = 0 on supp(dη̄).

Identical to Proposition 4.2, we obtain that the second-order sufficient condition (5.10)
implies the uniform second-order growth condition for the perturbed problems (Pδ)
(here again the statement is slightly modified).
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Proposition 5.3. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2)–(Ã3)
and the strong second-order sufficient condition (5.10). Then there exist c, ρ > 0 and
a neighborhood W of 0 in Ŵ , such that for all δ ∈ W and any stationary point (vδ, zδ)
of (Pδ) with ‖vδ − v̄‖2 < ρ,

(5.11) J δ(v) ≥ J δ(vδ) + c‖v − vδ‖22 ∀ v ∈ V : Γδ(v) ∈ K, ‖v − v̄‖2 < ρ.

Stability analysis. The main result of this section is the theorem below. The
key point is to show the existence of a stationary point for the perturbed linear-
quadratic problem under the weak second-order sufficient condition (5.10), where the
active constraints are taken into account. To this end, the uniform growth condition
(Proposition 5.3), together with an abstract theorem from Bonnans and Shapiro [6,
Theorem 5.17 and Remark 5.19], is used.

Theorem 5.4. Let (v̄, z̄) be a stationary point of (P0) satisfying (Ã2)–(Ã3) and
the strong second-order sufficient condition (5.10). Then there exist c, ρ, λ > 0 and a
neighborhood W of 0 in W , such that for all δ ∈ W, (Pδ) has a unique stationary point
(vδ, zvδ

) with ‖vδ− v̄‖2 < ρ and unique associated alternative multipliers (π2
δ , η

2
δ ), and

(5.12) ‖vδ − vδ′‖2 + ‖η2
δ − η2

δ′‖2 ≤ λ‖δ − δ′‖W ∀ δ, δ′ ∈ W .

Moreover, (vδ, zvδ
) is a local solution of (Pδ) satisfying the uniform quadratic growth

condition (5.11).
Proof. Let us show the existence of a stationary point of problem (Pδ). We may

write (Pδ) as

(Pδ) min
v∈V

1
2 〈v,Av〉 + 〈b, v〉 − 〈γ, v〉 s.t. Cv + d− ζ ∈ K,

where A is the continuous, self-adjoint bilinear operator over V associated with the
quadratic form (5.9), b is an element in V∗ ≡ V , C : v �→ Czv is a linear continuous
operator V → C[0, T ], and d ∈ H2(0, T ). Here, without ambiguity, we also denote by
〈·, ·〉 the scalar product over V .

Step 1. Reduction to a fixed feasible set. Let us first consider perturbations of
the cost function only, i.e., consider the problem (Pγ) defined by

(Pγ) min
v∈V

1
2 〈v,Av〉 + 〈b, v〉 − 〈γ, v〉 s.t. Cv + d ∈ K.

By Proposition 5.3, the uniform second-order growth condition holds for (Pγ), so does
Robinson’s constraint qualification by (Ã2), and the perturbed problem (Pγ) includes
the so-called tilt perturbation (see [6, p. 416]), i.e., additive perturbations of the cost
function of type −〈γ, v〉 with γ ∈ V∗. Therefore, it follows from [6, Theorem 5.17 and
Remark 5.19], since the feasible set of (Pγ) is constant, that there exist ρ1, ρ2 > 0 and
a constant λ > 0, such that for all γ ∈ B2(0, ρ2), (Pγ) has a unique stationary point
vγ in B2(v̄, ρ1), and

(5.13) ‖vγ − vγ′‖2 ≤ λ‖γ − γ′‖2 ∀ γ, γ′ ∈ B2(0, ρ2).

We have of course that v̄ = v0.
Step 2. Existence of a stationary point of (Pδ). Now let δ = (γ, ζ) ∈ W . By

Lemma 5.1, there exists vζ ∈ V such that

(Cvζ)(t) = ζ(t) on Ωσ and ‖vζ‖2 ≤ c‖ζ‖2,2.
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Set γ̃ := γ − Avζ . We have that ‖γ̃‖2 ≤ ‖γ‖2 + c‖A‖‖ζ‖2,2 < ρ2 if ‖δ‖W is small
enough. Therefore, there exists a (unique) stationary point vγ̃ ∈ B2(v̄, ρ1) of (Pγ̃),
with multiplier dηγ̃ ∈M[0, T ], satisfying the first-order optimality condition

(5.14)
{ Avγ̃ + b− γ̃ + C�dηγ̃ = 0,

Cvγ̃ + d ≤ 0 on [0, T ], dηγ̃ ≥ 0, 〈dηγ̃ , Cvγ̃ + d〉 = 0.

Since ‖Cvγ̃ − Cv̄‖∞ ≤ ‖C‖‖vγ̃ − v̄‖2 ≤ λ‖C‖‖γ̃‖2 by (5.13), if ‖δ‖W is small enough,
then the contact set of Cvγ̃ + d is included in Ωσ, and hence

(5.15) supp(dηγ̃) ⊂ Ωσ.

Let vδ := vγ̃ + vζ and dηδ := dηγ̃ . Note that there exists a constant a > 0 such that
(Cv̄)(t)+d(t) < −a on [0, T ]\Ωσ. Therefore, on [0, T ]\Ωσ, we obtain that (we denote
in what follows by C different positive constants)

Cvδ + d− ζ = Cv̄ + d− ζ + Cvζ + C(vγ̃ − v̄)
≤ −a + ‖ζ‖∞ + ‖Cvζ‖∞ + ‖C(vγ̃ − v̄)‖∞
≤ −a + C‖ζ‖2,2 + ‖C‖‖vζ‖2 + ‖C‖‖vγ̃ − v̄‖2
≤ −a + (C + c‖C‖)‖ζ‖2,2 + λ‖C‖‖γ̃‖2 ≤ −a + C‖δ‖W ,

and hence, if ‖δ‖W is small enough, then Cvδ + d − ζ < 0 on [0, T ] \ Ωσ. On Ωσ, we
have that Cvδ + d− ζ = Cvγ̃ + d ≤ 0. Therefore, using (5.14) and (5.15), vδ obviously
satisfies { Avδ + b− γ + C�dηδ = 0,

Cvδ + d− ζ ≤ 0 on [0, T ], dηδ ≥ 0, 〈dηδ, Cvδ + d− ζ〉 = 0,

i.e., vδ is a stationary point of (Pδ), with multiplier dηδ. Consequently, for ρ3 > 0
small enough, reducing ρ1 if necessary, (Pδ) has, for all δ ∈ BW (0, ρ3), a (necessarily
unique by Proposition 5.3) stationary point vδ ∈ B2(v̄, ρ1), with (unique) multiplier
dηδ. That (vδ, zvδ

) is a local solution of (Pδ) satisfying the uniform growth condition
(5.11) follows then from Proposition 5.3.

Step 3. Lipschitz continuity of the stationary point. Let δi = (γi, ζi) ∈ BW (0, ρ3),
i = 1, 2, and vζi be such that

Cvζi = ζi on Ωσ, i = 1, 2, and ‖vζ1‖2 ≤ c‖ζ1‖2,2, ‖vζ1 − vζ2‖2 ≤ c‖ζ1 − ζ2‖2,2.
It follows that ‖vζ2‖2 ≤ c(2‖ζ1‖2,2 + ‖ζ2‖2,2) < 3cρ3. Setting γ̃i := γi − Avζi , we
obtain as before that if ρ3 is small enough, then the unique stationary point vi of
(Pδi) is given by vi = vζi + vγ̃i . Therefore, using (5.13),

‖v1 − v2‖2 ≤ ‖vζ1 − vζ2‖2 + λ‖γ̃1 − γ̃2‖2
≤ c(1 + λ‖A‖)‖ζ1 − ζ2‖2,2 + λ‖γ1 − γ2‖2
≤ C‖δ1 − δ2‖W .(5.16)

Step 4. Lipschitz continuity of the alternative multiplier η2
δ given by (5.6). Using

the above notation, denote by dηi the (unique) multiplier associated with vi, and by
η2
i the associated alternative multiplier. Since −C�(dη2−dη1) = A(v2−v1)+γ2−γ1,

we have, for all v ∈ V ,

(5.17) |〈dη2 − dη1, Cv〉| ≤ (‖A‖‖v2 − v1‖2 + ‖γ2 − γ1‖2)‖v‖2.
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By Lemma 5.1, for all ϕ ∈ H2(0, T ), there exists v ∈ V such that Cv = ϕ on Ωσ and
‖v‖2 ≤ c‖ϕ‖2,2. It follows from (5.15) that

∫ T
0

ϕ(t)(dη2(t)−dη1(t)) = 〈dη2−dη1, Cv〉.
Therefore, we obtain in view of (5.17) that

‖dη2−dη1‖2,2∗ = sup
ϕ∈H2,ϕ �≡0

| ∫ T0 ϕ(t)(dη2(t)− dη1(t))|
‖ϕ‖2,2 ≤ c(‖A‖‖v2−v1‖2+‖γ2−γ1‖2).

Since ‖η2
2−η2

1‖2 ≤ C‖dη2−dη1‖2,2∗ by Lemma 4.5, the above estimate, together with
(5.16), shows the existence of a constant λ > 0 such that (5.12) holds and achieves
the proof of Theorem 5.4.

6. Proof of Theorem 4.3. In order to prove Theorem 4.3, we have to show that
assumptions (iii), (iv), and (v) of Theorem 4.8 are satisfied, which is done, respectively,
in Lemmas 6.1 to 6.3. Throughout this section, the assumptions of Theorem 4.3 are
assumed to hold. We consider a stable extension (Pμ) of (P), and we use the notations
defined in subsection 4.3. Moreover, the following notations are used throughout this
section (time dependence is omitted):

S := H̃uu(ū, ȳ, p̄2, η̄2), R := H̃uy(ū, ȳ, p̄2, η̄2), Q := H̃yy(ū, ȳ, p̄2, η̄2),
A := fy(ū, ȳ), B := fu(ū, ȳ), Φ := φyy(ȳ(T )),

C := gy(ȳ), d := g(ȳ), C1 = g(1)
y (ȳ),

C2 := g(2)
y (ū, ȳ), N2 := g(2)

u (ū, ȳ), a := −C2η̄
2, b := −N2η̄

2.

All the above quantities are bounded and Lipschitz continuous over [0, T ].
Let us first make explicit the expression of the derivative DxF(x̄, μ̄)(x−x̄) involved

in the definition (4.20) of L(x), with x = (u, η2) and x̄ = (ū, η̄2). Note that the Fréchet
derivative of the mapping (u, μ) �→ yμu w.r.t. u in direction v is the solution zμu,v of

żμu,v = fμy (u, yμu)zμu,v + fμu (u, yμu)v, zμu,v(0) = 0

and that of the mapping (x, μ) �→ p2,μ
x (recall that p2,μ

x is the solution of (4.19)) w.r.t.
x = (u, η2) in direction h = (v, ξ) is the solution π2,μ

x,h of (omitting the arguments
(u, yμu , p2,μ

x , η2))

(6.1)
−π̇2,μ

x,h = H̃μ
yuv + H̃μ

yyz
μ
u,v + π2,μ

x,hf
μ
y + ξ(gμ)(2)y ,

π2,μ
x,h(T ) = φμyy(y

μ
u(T ))zμu,v(T ).

Applications of Gronwall’s lemma shows that, for μ in a neighborhood of μ̄, x = (u, η2)
in a L∞-neighborhood of x̄ = (ū, η̄2) and a direction h = (v, ξ) ∈ X ,

‖zμu,v‖∞ = O(‖v‖2), ‖π2,μ
x,h‖∞ = O(‖h‖X),(6.2)

‖zμu,v − zμ̄ū,v‖∞ = O(‖u− ū‖2 + ‖μ− μ̄‖)‖v‖2,(6.3)

‖π2,μ
x,h − π2,μ̄

x̄,h‖∞ = O(‖x− x̄‖X + ‖μ− μ̄‖)‖h‖X .(6.4)

By the chain rule, we obtain that

DxF(x̄, μ̄)(x− x̄) =
(

S(u− ū) + Rzu−ū + π2
u−ū,η2−η̄2B + (η2 − η̄2)N2

Czu−ū

)
,
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where zu−ū := zμ̄ū,u−ū is the solution of (5.3) for v = u− ū, and π2
u−ū,η2−η̄2 := π2,μ̄

x̄,(x−x̄)
is the solution of (6.1) for (v, ξ) = (u− ū, η2 − η̄2):

−π̇2
v,ξ = R�v + Qzv + π2

v,ξA + ξC2, π2
v,ξ(T ) = Φzv(T ).

Set v := u − ū, and let δ = (γ, ζ) ∈ Δ. Then (4.13) has a unique solution x =
(u, η2) ∈ X̃ iff the system of equations below has a unique solution (v, z, π2, η2) with
(ū + v, η2) ∈ X̃:

ż = Az + Bv, z(0) = 0,

−π̇2 = R�v + Qz + π2A + η2C2 − η̄2C2, π2(T ) = Φz(T ),
0 = Sv + Rz + π2B + η2N2 − η̄2N2 − γ,

0 ≥ d + Cz − ζ, dη̇2 ≥ 0, 〈dη̇2, d + Cz − ζ〉 = 0.

We recognize the first-order necessary optimality condition of linear-quadratic prob-
lem (Pδ) in its alternative form. That is, setting dη = dη̇2 and π = π2−Cη̇2 + C1η

2,
we recover the “classical” optimality conditions of (Pδ) (note that C1 = Ċ + CA,
C2 = Ċ1 + C1A, N2 = C1B, and CB = g

(1)
u (ū, ȳ) ≡ 0):

ż = Az + Bv, z(0) = 0,

−dπ̇ = (R�v + Qz + πA− η̄2C2)dt + Cdη, π(T ) = Φz(T ),
0 = Sv + Rz + πB − η̄2N2 − γ,

0 ≥ d + Cz − ζ, dη ≥ 0, 〈dη, d + Cz − ζ〉 = 0.

We see then that (v̄, z̄) := 0 is a stationary point of (P0), with alternative multipliers
π̄2 := 0 and η̄2, and classical multipliers π̄ := −C ˙̄η2 + C1η̄

2 and η̄ = ˙̄η2. The
second-order optimality condition (3.6), with the quadratic cost expressed by (3.7),
is precisely the condition (5.10) and implies that (v̄, z̄) = 0 is a local solution of (P0).

The verifications of assumptions (iii) and (v) in Lemmas 6.1 and 6.3 are only
technical, and for assumption (iv) in Lemma 6.2, we use Theorem 5.4.

Lemma 6.1. The mapping Ψμ = F(·, μ) − L(·) is strictly stationary at x = x̄,
uniformly in μ near μ̄.

Proof. Let x1, x2 ∈ X and μ ∈ P . We have that

Ψμ(x1)−Ψμ(x2) = F(x1, μ)−F(x2, μ)−DxF(x̄, μ̄)(x1 − x2)

=
∫ 1

0

(DxF(θx1 + (1 − θ)x2, μ)−DxF(x̄, μ̄))dθ(x1 − x2).

Let x = (u, η2) ∈ X̃ . Then by (4.22)–(4.23), if x is close to x̄ = (ū, η̄2) for the
norm of X , this implies that (u, η2) belongs to a L∞-neighborhood of (ū, η̄2). Hence,
yμu and p2,μ

u,η2 remain also uniformly bounded for μ in a neighborhood of μ̄. Let
xi = (ui, η2

i ) ∈ X , i = 1, 2, and given θ ∈ [0, 1], write xθ := θx1 + (1 − θ)x2 and
similarly for the other variables. Set(

r1

r2

)
:= (DxF(xθ, μ)−DxF(x̄, μ̄))(x1 − x2).

Let us express the first row r1. Denoting by (·) the arguments (uθ, yμuθ
, p2,μ
xθ

, η2
θ), we

obtain that

r1 = (H̃μ
uu(·)− S)(u1 − u2) + (H̃μ

uy(·)zμuθ,u1−u2
−Rzμ̄ū,u1−u2

)

+ (π2,μ
xθ,x1−x2

fμu (·)− π2,μ̄
x̄,x1−x2

B) + (η2
1 − η2

2)((g
μ)(2)u (·)−N2).
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For (ui, η2
i ) in a L∞-neighborhood of (ū, η̄2) and μ in the neighborhood of μ̄, we have

that H̃μ
uu(·) − S = H̃μ

uu(uθ, yμuθ
, p2,μ
xθ

, η2
θ) − H̃ μ̄

uu(ū, ȳ, p̄2, η̄2) is arbitrarily small in the
L∞ norm, and similarly for the terms involving the other derivatives, H̃μ

uy, fμu , and

(gμ)(2)u . Therefore, given any ε > 0, for ‖xi − x̄‖X , ‖μ− μ̄‖ small enough,

‖r1‖2 ≤ ε(‖u1 − u2‖2 + ‖zμuθ,u1−u2
‖2 + ‖π2,μ

xθ,x1−x2
‖2 + ‖η2

1 − η2
2‖2)

+ ‖R‖∞‖zμuθ,u1−u2
− zμ̄ū,u1−u2

‖2 + ‖B‖∞‖π2,μ
xθ,x1−x2

− π2,μ̄
x̄,x1−x2

‖2.
Using (6.2)–(6.4) with x = xθ and h = x1 − x2, we obtain that ‖r1‖2 ≤ ε‖x1 − x2‖X ,
whenever x1, x2 are close enough to x̄ in X and μ is close enough to μ̄. For the second
row r2, we have that

r2 = gμy (yμuθ
)zμuθ,u1−u2

− gμ̄y (ȳ)zμ̄ū,u1−u2
,

ṙ2 = (gμ)(1)y (yμuθ
)zμuθ,u1−u2

− (gμ̄)(1)y (ȳ)zμ̄ū,u1−u2
,

r̈2 = ((gμ)(2)u (uθ, yμuθ
)− (gμ̄)(2)u (ū, ȳ))(u1 − u2)

+ (gμ)(2)y (uθ, yμuθ
)zμuθ,u1−u2

− (gμ̄)(2)y (ū, ȳ)zμ̄ū,u1−u2
.

Therefore, we conclude with the same arguments that ‖r2‖2,2 ≤ ε‖u1 − u2‖2, when-
ever ‖xi − x̄‖X , i = 1, 2, and ‖μ − μ̄‖ are small enough. This shows the desired
property.

Lemma 6.2. For k sufficiently large w.r.t. l in definition (4.15) of the space X, r
small enough in definition (4.16) of the space X̃, and small enough positive constants
� and k′ in definition (4.18) of the set Δ, (4.13) has a unique solution xδ = (uδ, η2

δ )
in X̃, for all δ ∈ Δ, and this solution is Lipschitz continuous w.r.t. δ.

Proof. We have that x = (u, η2) is solution of (4.13) iff (v := u− ū, zv) is solution
of the first-order optimality condition of (Pδ) with alternative multipliers π2

v,η2−η̄2 and
η2. By the hypotheses of Theorem 4.3, (v̄, z̄) = 0 is a stationary point of (P0) satisfying
the assumptions of Theorem 5.4. Choose � small enough, so that BW (0, �) is included
in the neighborhoodW of Theorem 5.4. By this theorem, for all δ ∈ BW (0, �), (Pδ) has
a unique stationary point (vδ, zvδ

) with ‖vδ‖2 < ρ and unique associated alternative
multipliers (π2

vδ ,η2
δ
−η̄2 , η

2
δ ). Therefore, (4.13) has a unique solution (uδ := ū + vδ, η

2
δ )

with ‖uδ−ū‖2 < ρ. We have to show that (uδ, η2
δ ) belongs to the space X̃. Throughout

the proof, we denote by C different positive constants.
By Proposition 5.2(i), shrinking � if necessary, we immediately obtain that η2

δ

belongs to the space BV 2
T,l[0, T ], for large enough l. Therefore, by (4.23) and (5.12),

for all δ ∈ BW (0, �),

‖η2
δ − η̄2‖∞ ≤ 3

√
6l‖η2

δ − η̄2‖2/32 ≤ 3
√

6lλ2/3‖δ‖2/3W .

For δ = (γ, ζ) ∈ Δ (then γ ∈ Lipk′), let us show now that uδ = ū + vδ ∈ Lipk. From
the first-order alternative optimality condition of (Pδ), we have that

(6.5) Svδ + Rzvδ
+ π2

vδ,η2
δ
−η̄2B + N2(η2

δ − η̄2)− γ = 0.

Since S is uniformly invertible by (A3), using (6.2), (5.12), and (4.22), we deduce that

‖vδ‖∞ ≤ C(‖zvδ
‖∞ + ‖π2

vδ,η2
δ−η̄2‖∞ + ‖η2

δ − η̄2‖∞) + ‖γ‖∞
≤ C(2λ‖δ‖W + 3

√
6lλ2/3‖δ‖2/3W ) + 3

√
3k′‖γ‖2/32

≤ (C(l) + 3
√

3k′)‖δ‖2/3W .
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We denote here and in what follows by C(l) different positive constants that depend
on l (but not on k). Since γ ∈ Lipk′ , η2

δ , η̄
2 ∈ BV 2

T,l ⊂ Lipl, zvδ
, π2
vδ,η2

δ−η̄2 ∈ W 1,∞,
S, R, B, N2 are Lipschitz continuous, and S is uniformly invertible, we can differentiate
(6.5) in time and get

Sv̇δ+Ṡvδ+Rżvδ
+Ṙzvδ

+ π̇2
vδ,η2

δ−η̄2B+π2
vδ,η2

δ−η̄2Ḃ+N2(η̇2− ˙̄η2)+Ṅ2(η2− η̄2)− γ̇ = 0.

Since ‖zvδ
‖∞, ‖π2

vδ,η2
δ−η̄2‖∞, ‖żvδ

‖∞, ‖π̇2
vδ,η2

δ−η̄2‖∞ ≤ C(‖vδ‖∞ + ‖η2
δ − η̄2‖∞), and S

has the inverse uniformly bounded over [0, T ], whereas ‖η̇2
δ‖∞, ‖ ˙̄η2‖∞ ≤ l, we obtain

that

‖v̇δ‖∞ ≤ C(‖vδ‖∞ + ‖η2
δ − η̄2‖∞ + ‖η̇2

δ − ˙̄η2‖∞) + ‖γ̇‖∞
≤ (C(l) + C

3
√

3k′)‖δ‖2/3W + 2Cl + k′.

Therefore, we have that ‖v̇δ‖∞ ≤ k/2 if, fixing a suitable l, we take k so large that
k > max{4Cl; 2‖ ˙̄u‖∞}, and choose � and k′ in (4.18) small enough. It follows that
the solution xδ = (uδ = ū + vδ, η

2
δ ) of (4.13) belongs to the space X . In addition, if

we choose r = ρ, with the ρ of Theorem 5.4, then xδ ∈ X̃ for ‖δ‖W small enough, and
is the unique solution of (4.13) in X̃. Moreover, by Theorem 5.4,

‖uδ − uδ′‖2 + ‖η2
δ − η2

δ′‖2 ≤ λ‖δ − δ′‖W ∀ δ, δ′ ∈ Δ.

This achieves the proof of assumption (iv) of Theorem 4.8.
Lemma 6.3. There exists a neighborhood of (x̄, μ̄), such that F(x, μ) − L(x)

belongs to Δ for all (x, μ) in this neighborhood.
Proof. We have to show that for ‖x− x̄‖X , ‖μ− μ̄‖ small enough, F(x, μ)−L(x) ∈

Δ, where Δ is our set of smooth variations defined by (4.18). Throughout this proof,
we denote by C different positive constants. For θ ∈ [0, 1], set xθ := θx + (1 − θ)x̄
and similarly define μθ. We have that

F(x, μ)− L(x) = F(x, μ) −F(x̄, μ̄)−DxF(x̄, μ̄)(x − x̄)

=
∫ 1

0

(DxF(xθ , μθ)−DxF(x̄, μ̄))dθ(x − x̄)

+
∫ 1

0

DμF(xθ , μθ)dθ(μ − μ̄) =:
(

r1

r2

)
.

Let us show that ‖r1‖2 + ‖r2‖2,2 ≤ � and ‖ṙ1‖∞ ≤ k′ for ‖x− x̄‖X and ‖μ− μ̄‖ small
enough. By the arguments of Lemma 6.1, given any ε > 0, for ‖x− x̄‖X and ‖μ− μ̄‖
small enough, we have that ‖ ∫ 1

0
(DxF(xθ, μθ)−DxF(x̄, μ̄))dθ(x− x̄)‖W ≤ ε‖x− x̄‖X .

Moreover, since DμF(x, μ) is uniformly bounded for (x, μ) in a neighborhood of (x̄, μ̄)
by definition of a stable extension, we deduce that

(6.6) ‖r1‖2 + ‖r2‖2,2 ≤ ε‖x− x̄‖X + C‖μ− μ̄‖ ≤ �

for ‖x − x̄‖X and ‖μ − μ̄‖ small enough. Making now explicit the expression of r1,
we obtain that (recall the notations S = H̃ μ̄

uu, R = H̃ μ̄
uy, B = f μ̄u , N2 = (gμ̄)(2)u )

r1 = H̃μ
u (u, yμu , p2,μ

u,η2 , η
2)− H̃ μ̄

u (ū, ȳ, p̄2, η̄2)− S(u− ū)−Rzu−ū

− π2
u−ū,η2−η̄2B −N2(η2 − η̄2).
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Time derivation yields (omitting arguments and reorganizing the terms)

ṙ1 = (H̃μ
uu − H̃ μ̄

uu)u̇ + (H̃μ
uyf

μ − H̃ μ̄
uyf

μ̄)− (H̃μ
y fμu − H̃ μ̄

y f μ̄u ) + ((gμ)(2)u − (gμ̄)(2)u )η̇2

− Rżu−ū − π̇2
u−ū,η2−η̄2B − Ṡ(u− ū)− Ṙzu−ū − π2

u−ū,η2−η̄2Ḃ − Ṅ2(η2 − η̄2).

For (u, η2) close to (ū, η̄2) in X , and μ in a neighborhood of μ̄, we have by (4.22)–(4.23)
that ‖(u, yμu, p2,μ

u,η2 , η2)− (ū, ȳ, p̄2, η̄2)‖∞ is arbitrarily small, and hence, by continuity
of H̃μ

uu, etc., given any ε > 0, we obtain that

‖ṙ1‖∞ ≤ ε(‖u̇‖∞ + ‖η̇2‖∞ + 1) + C(‖żu−ū‖∞ + ‖π̇2
u−ū,η2−η̄2‖∞)

+ C(‖u− ū‖∞ + ‖zu−ū‖∞ + ‖π2
u−ū,η2−η̄2‖∞ + ‖η2 − η̄2‖∞)

≤ ε(k + l + 1) + C(‖u− ū‖∞ + ‖η2 − η̄2‖∞)

≤ ε(k + l + 1) + C( 3
√

6k + 3
√

6l)‖x− x̄‖2/3X ≤ k′,

if ‖x − x̄‖X and ‖μ− μ̄‖ are small enough. It follows that r1 ∈ Lipk′(0, T ; Rm), and
with (6.6), this achieves the proof.

Proof of Theorem 4.3. We apply Theorem 4.8 with the spaces X , X̃ , W , Δ, P and
mappings F , N , L defined in subsection 4.3. We set x̄ := (ū, η̄2). The assumptions
(i) and (ii) of Theorem 4.8 are obviously fulfilled by our hypotheses and the definition
of a stable extension. For an appropriate choice of the constants k, l, r, k′, � involved
in the definition of the spaces X , X̃, and Δ, assumptions (iii), (iv), and (v) hold by
Lemmas 6.1, 6.2, and 6.3, respectively. It follows that for all μ in a neighborhood
of μ̄, there exist a unique stationary point (uμ, yμ) of (Pμ) and unique associated
alternative multipliers (p2,μ, η2,μ) with (uμ, η2,μ) in a X-neighborhood of x̄, and (4.14)
is satisfied. Since, by definition of a stable extension, F is Lipschitz continuous w.r.t.
μ, uniformly w.r.t. x, this implies that (4.2) holds, while (4.3) follows from (4.22)–
(4.23). Finally, by (4.3), taking if necessary a smaller neighborhood of μ̄, uμ belongs
to the L∞-neighborhood of ū on which the uniform quadratic growth condition holds
(Proposition 4.2). Therefore, (uμ, yμ) is the unique stationary point of (Pμ) with uμ

in a L∞-neighborhood of ū and is a local solution of (Pμ) satisfying (4.1).

7. Conclusion and remarks. In this paper, we obtain for the first time stabil-
ity results for optimal control problems with a state constraint of order greater than
one without any assumption on the structure of the contact set. For this we use a gen-
eralized implicit function theorem in metric spaces [9] applied to a system equivalent
to the first-order optimality condition, involving alternative multipliers obtained by
integrating the original state constraint multiplier. In the stability analysis of linear-
quadratic problems, we use [6, Theorem 5.17] to obtain the existence of a stationary
point for the perturbed problem under a weak second-order sufficient condition tak-
ing into account the active constraints. In this way the method for weakening the
second-order sufficient condition is different from the method used in [21, 20].

Due to the low regularity of state constraint multipliers, we use a framework that
differs from the ones used for first-order state constraints in [18] or in [9] in the choice
of the spaces for the state constraint and state constraint multiplier. We keep the
idea of [9] to use as control space the space of Lipschitz continuous functions with a
bound on the Lipschitz constant.

Though the analysis is restricted to a scalar state constraint of second-order, the
framework and results presented in this paper have a natural extension to several
state constraints of orders ≥ 2 (see Remarks 2.2 and 2.3). Taking into account both
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components of first-order and higher-order is more delicate since then the arguments
used in [18, 9, 20] and in the present paper would have to be combined.

Making additional assumptions on the structure of the contact set, L∞ Lipschitz
stability of solutions can be obtained (see [22, 5]) improving (4.3), as it is the case for
first-order state constraints (see [9, section 4]). In [22, 5] it was also shown using a
shooting approach that the solutions are directionally differentiable w.r.t. the param-
eter. It would be interesting as well to obtain sensitivity results without assumption
on the structure of the contact set, extending to higher-order state constraints the
sensivity results obtained by Malanowski [18] for state constraints of first-order.

Finally, let us note that the second-order sufficient condition (3.6) used in the
stability analysis might be weakened by taking into account the curvature term of the
constraint (see [2, Theorem 27], [3, Theorem 6.1], and [5, Theorem 4.3]).
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manuscript and the anonymous referees for their useful remarks.
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Abstract. A new method for the efficient solution of a class of convex semidefinite programming
(SDP) problems is introduced. The method extends the sequential convex programming (SCP)
concept to optimization problems with matrix variables. The basic idea of the new method is to
approximate the original optimization problem by a sequence of subproblems, in which nonlinear
functions (defined in matrix variables) are approximated by block separable convex functions. The
subproblems are semidefinite programs with a favorable structure which can be efficiently solved by
existing SDP software. The new method is shown to be globally convergent. The article is concluded
by a series of numerical experiments with free material optimization problems demonstrating the
effectiveness of the generalized SCP approach.
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1. Introduction. Free material optimization (FMO) is a branch of structural
optimization that has gained more and more interest in recent years. It represents
a generalization of so-called topology optimization (see [3]) that, nowadays, is being
routinely used in the industry. FMO has been successfully used for conceptual de-
sign of aircraft components; the most prominent example is the design of ribs in the
leading edge of Airbus A380 [12]. The underlying FMO model was introduced in [2]
and [21] and has been studied in several further articles such as, for example, [4, 33].
The optimization variable is the material tensor which is allowed to vary from point
to point. The method is supported by powerful optimization and numerical tech-
niques, which allow for scenarios with complex bodies and fine finite-element meshes.
Rather than solving the (primal) FMO problem directly, the most successful method
for the solution of multiple load FMO problems is based on dualization of the original
problem and leads to large scale semidefinite programming problems [4]. The dual
method has been implemented in a software package Moped which has been recently
applied to real-world applications. Nevertheless, the dual semidefinite approach has
two major disadvantages. First of all, the computational complexity of the method
depends cubically on the number of load cases [14]. This makes the approach im-
practical for three-dimensional (3D) problems with more than a few (typically 3–5)
load cases. Moreover, it is almost impossible to apply the dual approach to extended
(multidisciplinary) FMO problems. This is a serious drawback, because additional
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constraints like, for instance, displacement-based constraints play an important role
in many real-world applications (compare [12, 15]). A direct treatment of the primal
problem seems to avoid both of these difficulties, but, unfortunately, no successful
algorithmic concept has been found for the solution of this problem so far.

On the other hand, during the last two decades powerful optimization methods
have been developed for the solution of topology optimization problems, based on
the so-called SIMP (solid isotropic material with penalization) approach (see [3]), a
related field of structural optimization. The most successful methods CONLIN [8],
the method of moving asymptotes [26, 27], and the sequential convex programming
method [31, 32] are all based on separable convex first-order approximations of non-
linear functions. The mathematical structure of SIMP-based optimization problems
is closely related to the structure of the primal FMO problem. The only significant
difference is that the design variables in FMO (material matrices/tensors) are defined
in matrix spaces, while the variables in SIMP-based problems (density, thickness) are
typically of real type. Motivated by this fact, we propose a new optimization method,
which generalizes the sequential convex approximation concept to functions defined
on matrix spaces. In the scope of this article we investigate theoretical as well as
numerical aspects of the new method. Moreover, we demonstrate by numerical ex-
periments that the new method offers a viable alternative and supplement to existing
methods in the field of material optimization.

This article is structured as follows: In section 2, we define the basic problem
statement and provide a brief motivation of the optimization method discussed in
this article. In section 3, we introduce so-called separable hyperbolic approximations
of functions defined on matrix spaces. In section 4, these approximations are used to
construct a globally convergent algorithm for the solution of certain convex semidef-
inite programs. Then, in section 5, we describe an algorithm used for the efficient
solution of separable convex semidefinite programs, which appeared as subproblems
in section 4. In section 6, we briefly repeat the FMO model. Finally, in section 7, we
present algorithmic details along with extensive numerical studies by means of FMO
problems.

Throughout this article we use the following notation: We denote by S
d the space

of symmetric d×d-matrices equipped with the standard inner product 〈·, ·〉Sd defined by
〈A, B〉Sd := Tr(AB) for any pair of matrices A, B ∈ S

d. We denote by S
d
+ the cone of

all positive semidefinite matrices in S
d and use the abbreviation A �Sd 0 for matrices

A ∈ S
d
+. Moreover, for A, B ∈ S

d, we say that A �Sd B if and only if A − B �Sd 0
and similarly for A �Sd B. Further we make use of the operator svec : S

d → R
d̂ with

d̂ := d(d + 1)/2, which maps a matrix A ∈ S
d with entries (ai,j)

d
i,j=1 to the vector

(a1,1, a2,1, a2,2, a3,1, a3,2, a3,3, . . . , ad,1, ad,2, . . . , ad,d)

(notice the slightly nonstandard definition of this operator). Along with this operator
we define smat : R

d̂ → S
d as the inverse operator of svec.

2. Motivation. Our aim is to solve the following generic optimization problem:

min
Y ∈S

f(Y )(P)

subject to
gk(Y ) ≤ 0, k = 1, 2, . . . , K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . , m,
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with

S = S
d1 × S

d2 × · · · × S
dm and (d1, d2, . . . , dm) ∈ N

m .

We assume that, in general, m is large (103–105) and di are small (2–10). That is, we
have many small-size matrix variables and matrix constraints.

In what follows F denotes the feasible domain of problem (P). Throughout the
paper we make the following assumptions:

(A1) f : S → R is convex. Moreover, f is the maximum over a finite set of twice
continuously differentiable functions. Therefore we may write

f(Y ) = max
�∈Imax

f�(Y )

for some index set Imax.
(A2) The functions gk : S → R (k = 1, 2, . . . , K) are continuously differentiable

and convex so that F is convex.
(A3) The interior of F is nonempty.

Problems of type (P) arise in various applications. Our main motivation is to
solve the FMO problems described in detail in section 6. However, other applications
can be found, e.g., in spline approximation [1] and sparse semidefinite programming
(SDP) relaxation of polynomial optimization problems [28].

Of course, one could try to apply an existing linear or nonlinear (convex) SDP
solver directly in order to solve (P). However, in our FMO application, the Hessian
of the objective function is a full matrix and, given the dimension of the problem, it is
prohibitive to use second-order methods with explicit derivative calculations. Experi-
ments with an SDP solver avoiding the calculation and storage of explicit second-order
derivatives by Krylov-type methods (see [16]) led to only moderate success. For this
reason we decided to develop an SDP solver that is solely based on first-order infor-
mation.

We have opted for a generalization of the so-called sequential convex approxima-
tion methods. These methods proved to be extremely efficient when solving (stan-
dard) nonlinear optimization problems arising in the field or structural optimization.
The most prominent (and well-known in the structural optimization community) rep-
resentatives are CONLIN [8] by Fleury, the method of moving asymptotes (MMA)
[26, 27] by Svanberg, and the sequential convex programming method (SCP) [31, 32]
by Zillober. All of these methods are based on separable convex first-order approxima-
tions of nonlinear functions. The mathematical structure of structural optimization
problems is closely related to the structure of our FMO problem. The only signifi-
cant difference is that the design variables in FMO are matrices of dimension 3 × 3
or 6 × 6, while the variables in structural optimization problems (density, thickness)
are typically real vectors. Motivated by this fact, we propose a generalization of the
sequential convex approximation concept to functions defined on matrix spaces.

We should emphasize that, while the sequential convex approximation methods
are efficient when solving structural optimization problems, they are still first-order
methods. Although they were applied to few other problems, too (see [30]), no sys-
tematic study or benchmark testing has been done for general large-scale nonlinear
optimization problems, as to our knowledge. A brief comparison with an SQP code
can be found in [22], using the Hock–Schittkowski collection of 306 small-scale test
problems (with up to 100 variables). Within a relatively low accuracy of the stopping
criteria, the SCP code solved 93% of all problems (compared to 100% success of the
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SQP code), while the number of function evaluations was about twice as high as for
the SQP code. As with other first-order methods, examples can be found for which
the method will behave poorly. Therefore, we do not want to make an impression
that our generalization is a universal cure for large-scale (nonlinear) SDP problems.
But, as we will see in section 7, it is efficient when solving the FMO problems.

3. A block-separable convex approximation scheme. In this section, we
will define block-separable convex approximations of continuously differentiable func-
tions

(3.1) f : S→ R, where S = S
d1 × S

d2 × · · · × S
dm and (d1, d2, . . . , dm) ∈ N

m.

Let I = {1, 2, . . . , m}. On S we define the inner product 〈·, ·〉S :=
∑

i∈I〈·, ·〉Sdi , where
〈·, ·〉Sdi is the standard inner product in S

di (i ∈ I). Moreover, we denote by ‖ · ‖S the
norm induced by 〈·, ·〉S. Finally, we denote the directional derivatives of f of first and
second order in directions V, W ∈ S by ∂

∂Y f(Y ; V ) and ∂2

∂Y ∂Y f(Y ; V, W ), respectively.
Definition 3.1. We call an approximation g : S → R of a function f of type

(3.1) a convex first-order approximation at Ȳ = (Ȳ1, . . . , Ȳm) ∈ S if the following
assumptions are satisfied:

(A4) g(Ȳ ) = f(Ȳ ),
(A5) ∂

∂Yi
g(Ȳ ) = ∂

∂Yi
f(Ȳ ) for all i ∈ I,

(A6) g is convex.
In the following, we construct a local block separable convex first-order approxi-

mation scheme for functions of type f . Our construction can be considered a gener-
alization of the classic MMA-type approximations defined, for example, in [26, 32].

We start with the following definitions.
Definition 3.2. Let f : S→ R be continuously differentiable on a subset B ⊂ S.

For all i ∈ I we define differential operators entrywise by

(∇if)
�,j

:=
(

∂f

∂Yi

)
�,j

, 1 ≤ l, j ≤ di,

and denote by ∇i+f(Ȳ ) and ∇i−f(Ȳ ) the projections of ∇if(Ȳ ) onto S
di
+ and S

di− ,
respectively.

Definition 3.3. Let f : S→ R be continuously differentiable on a subset B ⊂ S

and Ȳ = (Ȳ1, Ȳ2, . . . , Ȳm) ∈ B. Moreover, let asymptotes L = (L1, L2, . . . , Lm)� and
U = (U1, U2, . . . , Um)� be given such that

Li ≺
S

di
+

Ȳi ≺
S

di
+

Ui for all i ∈ I

and τ := {τ1, τ2, . . . , τm} be a set of nonnegative real parameters. Then we define the
hyperbolic approximation fL,U,τ

Ȳ
of f at Ȳ as

fL,U,τ
Ȳ

(Y ) := f(Ȳ )

+
m∑
i=1

〈∇i+f(Ȳ ), (Ui − Ȳi)(Ui − Yi)−1(Ui − Ȳi)− (Ui − Ȳi)
〉

Sdi

−
m∑
i=1

〈∇i−f(Ȳ ), (Ȳi − Li)(Yi − Li)−1(Ȳi − Li)− (Ȳi − Li)
〉

Sdi

+
m∑
i=1

τi
〈
(Yi − Ȳi)2, (Ui − Yi)−1 + (Yi − Li)−1

〉
Sdi

.(3.2)
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The following theorem says that (3.2) is a convex approximation in the sense of
Definition 3.1.

Theorem 3.4.

(a) fL,U,τ
Ȳ

satisfies assumptions (A4)–(A6).
(b) fL,U,τ

Ȳ
is separable w.r.t. the matrix variables Y1, Y2, . . . , Ym.

(c) Let B be a compact subset of S, τ ≥ τi ≥ τ > 0 for all i ∈ I, and compact
sets of asymptotes L and U satisfy the following condition:

(AS) ∀
{

L ∈ L
U ∈ U

}
∃μ > 0 : ∀i ∈ I ∀Y ∈ B :

{
Yi − Li
Ui − Yi

}
� μISdi .

Then fL,U,τ
Ȳ

is strongly convex on B and there is a common constant ν > 0
such that for all L ∈ L, U ∈ U , and Ȳ ∈ B

∂

∂Y
fL,U,τ
Ȳ

(Y ; X − Y ) + ν‖X − Y ‖ ≤ fL,U,τ
Ȳ

(X)− fL,U,τ
Ȳ

(Y )

for all X, Y ∈ B. Moreover, the second-order derivative of fL,U,τ
Ȳ

is uniformly
bounded for all L ∈ L, U ∈ U , and Ȳ ∈ B in the sense that there is a constant
ν > 0 such that

∂2

∂Y ∂Y
fL,U,τ
Ȳ

(Y ; D, D) ≤ ν‖D‖2

for all Y ∈ B and all D ∈ S.
Proof.

(A4) For Y := Ȳ we have for all i ∈ I
〈∇i+f(Ȳ ), (Ui − Ȳi)(Ui − Ȳi)−1(Ui − Ȳi)− (Ui − Ȳi)

〉
Sdi

=
〈∇i+f(Ȳ ), (Ui − Ȳi)− (Ui − Ȳi)

〉
Sdi

= 0.

Consequently, the first sum in (3.2) vanishes. Analogously, we show that the
second sum vanishes and, with

〈
(Ȳi − Ȳi)2, (Ui − Yi)−1 + (Yi − Li)−1

〉
Sdi

= 0,
we conclude that fL,U,τ

Ȳ
(Ȳ ) = f(Ȳ ).

(A5) Differentiating fL,U,τ w.r.t. Yi we obtain

∂

∂Yi
fL,U,τ
Ȳ

(Y ) = (Ui − Yi)−1(Ui − Ȳi)∇i+f(Ȳ )(Ui − Ȳi)(Ui − Yi)−1

+ (Yi − Li)−1(Ȳi − Li)∇i−f(Ȳ )(Ȳi − Li)(Yi − Li)−1

+ τi
(
ISdi − (Ui − Yi)−1(Ui − Ȳi)2(Ui − Yi)−1

)
+ τi

(
ISdi − (Yi − Li)−1(Ȳi − Li)2(Yi − Li)−1

)
.(3.3)

Substituting Y := Ȳ in (3.3), we obtain

∂

∂Yi
fL,U,τ
Ȳ

(Ȳ ) = ∇i+f(Ȳ ) +∇i−f(Ȳ ) = ∇if(Ȳ ) =
∂

∂Yi
f(Ȳ ).

(A6) Before we show convexity, we prove separability (assertion (b)). This follows
immediately from (3.3), as

∂

∂Yj

(
∂

∂Yi
fL,U,τ
Ȳ

(Y )
)

= 0.
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Now, in order to prove convexity, it is sufficient to show that for all i ∈ I, for
all Y ∈ S, and for an arbitrary direction D ∈ S

di ,

(3.4)
∂2

∂Yi∂Yi
fL,U,τ
Ȳ

(Y ; D, D) =
〈
∇i
〈
∇ifL,U,τ

Ȳ
(Y ), D

〉
Sdi

, D
〉

Sdi

≥ 0.

Introducing the abbreviations B+
i := (Ui − Ȳi)∇i+f(Ȳ )(Ui − Ȳi) and B−

i :=
(Ȳi − Li)∇i−f(Ȳ )(Ȳi − Li) it follows from (3.3) that〈

∇i
〈
∇ifL,U,τ

Ȳ
(Y ), D

〉
Sdi

, D
〉

Sdi

= 2
〈
D(Ui − Yi)−1D, (Ui − Yi)−1B+

i (Ui − Yi)−1
〉

Sdi

+ 2
〈
D(Yi − Li)−1D, (Yi − Li)−1(−B−

i )(Yi − Li)−1
〉

Sdi

+ 2τi
〈
D(Ui − Yi)−1D, (Ui − Yi)−1(Ui − Ȳi)2(Ui − Yi)−1

〉
Sdi

+ 2τi
〈
D(Yi − Li)−1D, (Yi − Li)−1(Ȳi − Li)2(Yi − Li)−1

〉
Sdi

.(3.5)

Given that the matrices B+
i ,−B−

i , Ui−Yi, Yi−Li, (Ui−Ȳi)2, and (Ȳi−Li)2 are
all positive semidefinite, we observe that all terms in (3.5) are nonnegative.
Consequently, the estimate (3.4) holds true and fL,U,τ

Ȳ
is convex. Finally,

given that (AS) holds for the compact sets L and U , we use (3.5) to show
that 〈

∇i
〈
∇ifL,U,τ

Ȳ
(Y ), D

〉
Sdi

, D
〉

Sdi

≥ 2τi
〈
D(Ui − Yi)−1D, (Ui − Yi)−1(Ui − Ȳi)2(Ui − Yi)−1

〉
Sdi

+ 2τi
〈
D(Yi − Li)−1D, (Yi − Li)−1(Ȳi − Li)2(Yi − Li)−1

〉
Sdi

≥ 4τiγ
3μ2 〈D, D〉

Sdi ,

where γ is an upper bound for the maximal possible difference of eigenvalues
of arbitrary elements in the compact sets B and L or B and U , respectively.
Now the assertion of part (c) follows with ν := m4τγ3μ2. The uniform
boundedness of the second-order derivatives follows in an analogous way from
(3.5) with ν := mγ2μ3(2 maxi∈I,Y∈B ‖∇if(Ȳ )‖+ 4τ).

Remark 3.1. Assumption (AS) in Theorem 3.4 essentially says that the eigenvalues
of all iterates have to remain bounded away from the asymptotes by a small positive
number. This is crucial for the strong convexity proof in part (c) of Theorem 3.4. A
practical choice of asymptotes is briefly discussed in section 7. For more sophisticated
choices of asymptotes in the nonlinear programming case we refer to [5, 9, 26, 32].

4. A globally convergent algorithm based on hyperbolic approxima-
tions. In the framework of this section we use the local hyperbolic approximations
defined in section 3 in order to establish a solution scheme for our generic convex
optimization problem (P):

min
Y ∈S

f(Y )(P)

subject to
gk(Y ) ≤ 0, k = 1, 2, . . . , K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . , m ;

here S is defined as in (3.1). Recall that F denotes the feasible domain of problem
(P). In addition to (A1)–(A6), we will make the following assumption:
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(A7) The compact sets L and U satisfy property (AS) for the compact set F .
Given an iteration index j and an associated feasible point Y j of problem (P),

we define a local hyperbolic approximation of f as

f j(Y ) := max
�∈Imax

f j� (Y ) := max
�∈Imax

(f�)
Lj ,Uj ,τ j

Y j (Y ).

Using this function, we further define a local approximation of (P) close to Y j as
follows:

min
Y ∈S

f j(Y )(Pj)
subject to

gk(Y ) ≤ 0, k = 1, 2, . . . , K,

Yi
j �Sdi Yi �Sdi Yi

j
, i = 1, 2, . . . , m.

Here the bounds Yi
j , Yi

j
are chosen to be compatible with the following assumption:

(A8) Yi �Sdi Yi
j �Sdi Y j

i �Sdi Yi
j �Sdi Yi for all i = 1, 2, . . . , m.

We denote the feasible domain of problem (Pj) by F j . By construction the following
corollary is an immediate consequence of Theorem 3.4.

Corollary 4.1.

(a) f j(Y j) = f(Y j).
(b) The subdifferentials of f j and f coincide at Y j, i.e., ∂f j(Y j) = ∂f(Y j).
(c) f j is convex.
(d) f j is separable w.r.t. Y1, Y2, . . . Ym.
(e) Let τ ≥ τ1, τ2, . . . , τm ≥ τ > 0. Let further compact sets of asymptotes L and
U be given such that property (AS) holds for F j. Then f j is strongly convex
on F j. Moreover, there is a common constant ν > 0 such that for all j

∂

∂Y
f j(Y ; X − Y ) + ν‖X − Y ‖ ≤ f j(X)− f j(Y )

for all X, Y ∈ F j.
Proof. All assertions but the last one follow directly from Theorem 3.4. It re-

mains to show that F j is compact and convex. The convexity follows directly from
assumption (A2). Moreover, each domain F j is compact as a closed subset of the
domain

{
Y ∈ S | Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . , m

}
.

The following proposition states some basic properties of (Pj).
Proposition 4.2. Each subproblem (Pj) has a unique solution Y j+1. Associated

with Y j+1 there exist Lagrangian multipliers (vj+1, V j+1) such that (Y j+1, vj+1, V j+1)
is a KKT point of (Pj).

Proof. The existence and the uniqueness of a solution follows from the strong
convexity of the objective function f j on the compact set F j . Furthermore, assump-
tion (A3) implies that the Slater condition holds for (Pj). Consequently a KKT point
exists.

Now we are able to present the basic algorithm for the solution of (P).
Algorithm 4.3. Let initial points Y 1 ∈ S and initial multipliers (v1, V 1) ∈

R
k
+ × S+ be given.

(1) Put j = 1.
(2) Choose asymptotes Lj ∈ L, U j ∈ U , and τ ≥ τ j1 , τ j2 , . . . , τ jm ≥ τ > 0.
(3) Solve problem (Pj). Denote the solution by Y + ∈ S and the associated La-

grangian multipliers by (v+, V +) ∈ R
k
+ × S+.
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(4) Choose αj = min{1, α̂}, where α̂ = argminα∈R+
f(Y j + α(Y + − Y j)).

(5)
(
Y j+1, vj+1, V j+1

)
=
(
Y j , vj , V j

)
+ αj

(
(Y +, v+, V +)− (Y j , vj , V j

))
.

(6) If Y j+1 is stationary for problem (P), STOP; otherwise put j = j + 1 and
GOTO (2).

Possible choices of asymptotes (step 2) will be discussed in section 7. In section
5, we will propose an algorithm for the efficient solution of the subproblem in step 3.
Practical implementations of the line search in step 4 as well as the stopping criterion
in step 6 will be given in section 7. Before we state the central convergence result for
Algorithm 4.3, we make one more assumption:

(A9) The multiplier estimates generated by Algorithm 4.3 stay bounded.
Note that in [31] the assertion of assumption (A9) is proven to hold for standard
inequality constrained nonlinear programs under the LICQ condition.

Theorem 4.4. If f is bounded from below in F , then assume that (A1)–(A3) and
(A7)–(A6) are satisfied. Then either Algorithm 4.3 stops at a global minimizer of (P)
or the sequence {Y j}j>0 generated by Algorithm 4.3 has at least one accumulation
point and each accumulation point is a global minimizer of (P).

In order to be able to prove the convergence theorem, we make use of the following
lemmas.

Lemma 4.5. Let Af(j) (Y ) := {� | f (j)
� (Y ) = f (j)(Y )} ⊂ Imax. Then

(4.1) ∂f (j)(Y ) = conv{∇f
(j)
� (Y ) | � ∈ A(Y )},

where ∂f (j)(Y ) denotes the subdifferential of f (j) at Y and conv is the convex hull.
Proof. Formula (4.1) is a direct consequence of Corollary 4.3.2 in [10].
Lemma 4.6. If Y j ∈ F j is not stationary for (P), then the direction Dj :=

Y + − Y j is a descent direction for f at Y j.
Proof. Using the fact that Y + is a unique minimizer of (Pj), we obtain the

following from Corollary 4.1(e):

(4.2)
∂

∂Y
f j(Y j ; Dj) + ν‖Dj‖ ≤ f(Y +)− f(Y j) ≤ 0.

Consequently, we obtain the following from the first-order approximation properties
of f j:

∂

∂Y
f(Y j ; Dj) < 0.

Lemma 4.7. Algorithm 4.3 generates a sequence of feasible points Y 1, Y 2, . . .
with

f(Y j+1) ≤ f(Y j).

Proof. The convexity of F j and the fact that F j ⊂ F imply that all iterates
remain feasible. Let us now consider a subproblem at an arbitrary iteration j. Then
we have f(Y j) = f j(Y j). From assumption (A8) we know that Y j is a feasible point
of problem (Pj). Consequently, it follows from Lemma 4.6 that Dj := Y + − Y j is a
descent direction for f at Y j . Now the assertion follows by construction of the line
search defined in step 4 of Algorithm 4.3.

Lemma 4.8. Let Y ∗ ∈ F be an accumulation point of the sequence generated by
Algorithm 4.3 applied to (P). Then Y ∗ is an unconstrained minimizer of f or the line
search in step 4 of Algorithm 4.3 returns the result αj = 1 for almost all j > 0.
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Proof. Given an arbitrary element gj ∈ ∂f(Y j) with 〈−gj , Dj〉 = ∂
∂Y f(Y j ; Dj) it

follows from (4.2) that

(4.3)
〈−gj , Dj〉S
‖Dj‖S ≥ ν > 0.

From (4.3) and the fact that ‖gj‖S is bounded on the compact set F , we obtain the
existence of γ > 0 such that

〈−gj, Dj〉S
‖Dj‖S‖gj‖S ≥ γ.

Consequently, the cosine of the angle between ∂f(Y j) and the descent direction Dj

is strictly bounded from zero. Suppose now that Algorithm 4.3 generates infinitely
many iterations js with argminα∈R+

f(Y js + αY +) ∈ [0; 1). Then it follows from
the Theorem of Zoutendijk (see [19, Thm. 3.2]) that ‖gj‖S → 0. Hence we obtain
0 ∈ ∂f(Y ∗) and conclude that Y ∗ ∈ F is a minimizer of the convex function f .

Now we are able to finish the proof of Theorem 4.4.
Proof. Suppose that Algorithm 4.3 does not stop at a stationary point. Then,

according to Lemma 4.7, it generates an infinite sequence with {Y k}k>0 in F such
that {f(Y k)}k>0 is monotonically decreasing. As f is bounded from below on the
compact set F , the sequence {f(Y k)}k>0 converges. Therefore, there is at least one
accumulation point Y ∗ of the sequence {Y k}k>0.

Next we will show that Y ∗ is a first-order critical point and thus a global optimizer
for problem (P). Proposition 4.2 guarantees that step 3 of Algorithm 4.3 is well-
defined. Moreover, from Lemma 4.8 we have, after finitely many iterations,

(
Y +, v+, V +

)
=
(
Y j+1, vj+1, V j+1

)
.

Lemma 4.7 and the fact that (Y +, v+, V +) is a KKT point of problem (Pj) imply the
existence of an index j̄ > 0 and a subsequence {Y js}js>j̄ such that

• Y js ∈ F ,
• vjs ≥ 0, V js � 0,
• g(Y js)�vjs = 0,
• 〈Y js

i − Y i, V
js
i 〉 = 0, 〈Y i − Y js

i , V js
i+m〉 = 0 for all i = 1, 2, . . . , m.

Hence Y ∗ is feasible. Moreover, making use of assumption (A9), we conclude that
there exist nonnegative multipliers (v∗, V ∗) such that the triple (Y ∗, v∗, V ∗) satisfies
the complementary slackness condition for (P). In order to complete the proof, we
have to show that

(4.4) dist
({0}, ∂YL(Y js , vjs , V js)

)→ 0

for js → ∞, where L denotes the Lagrangian function associated with problem (P)
and

dist(A, B) := min
X∈A,Y ∈B

‖X − Y ‖S
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for two sets A, B ⊂ S. Denoting by Ljs the Lagrangian function associated with
problem (Pjs), the following estimate holds true:

dist
(
0, ∂Y L(Y js , vjs , V js)

)
= dist

(
0, ∂Y f js(Y js)− ∂Y f js(Y js) + ∂Y L(Y js , vjs , V js)

)
≤ dist

(
0, ∂Y f(Y js)− ∂Y f js(Y js)

)
+ dist

(
0, ∂Y Ljs(Y js , vjs , V js)

)
= dist

(
∂Y f js(Y js), ∂Y f(Y js)

)
≤ dist

(
∂Y f js(Y js−1), ∂Y f js(Y js)

)
+ dist

(
∂Y f(Y js−1), ∂Y f(Y js)

)
.(4.5)

From the continuity of f we have (see, e.g., [10])

dist
(
∂Y f(Y js−1), ∂Y f(Y js)

)→ 0

for js →∞. Moreover, we conclude from the uniform boundedness of the second-order
directional derivatives stated in Theorem 3.4(c) that for all � ∈ Imax

‖∇f js� (Y j−1)−∇f js� (Y j)‖ → 0

for js →∞. Now, applying Lemma 4.5, we obtain

dist
(
∂Y f js(Y js−1), ∂Y f js(Y js)

)→ 0

for js →∞. Consequently, (4.4) holds, Y ∗ is a first-order critical point, and the proof
of Theorem 4.4 is complete.

5. A modified barrier algorithm for the solution of subproblems. In
order to solve the subproblems defined in section 4 numerically, we rewrite them in
terms of real variables x = (x̄1, x̄2, . . . , x̄m)� ∈ R

d̂1 × R
d̂2 × · · · × R

d̂m = R
d̂. This

yields the following problem:

min
x∈Rd̂

max
�∈Imax

f̃L,U,τsmat(x̄),�(x)(5.1)

subject to
gk(smat(x)) ≤ 0, k ∈ {1, 2, . . . , K},
Yi �Sdi smat(x̄i) �Sdi Yi, i ∈ I.

In this section, we work with the following additional assumption:
(A10) the functions gk : R

d̂ → R (k = 1, 2, . . . , K) are separable w.r.t. x̄1, x̄2, . . . , x̄m.
The algorithm used to solve subproblems of the form (5.1) is based on a generalized
augmented Lagrangian method for the solution of nonlinear (semidefinite) programs
and described in detail in [13, 25]. We briefly recall the basics here and show how this
algorithm can be adapted to take advantage of the special structure of problem (5.1).

The algorithm described in [13, 25] is designed for the solution of general nonlinear
semidefinite optimization problems of the form

min
x∈Rn

f(x)(5.2)

subject to
Gj(x) � 0, j ∈ J = {1, 2, . . . , J} ,

where f : R
n → R and Gj(x) : R

n → S
mj (j ∈ J ) are twice continuously differentiable

mappings. The algorithm is based on a choice of smooth modified barrier functions
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Φp : S
mj → S

mj (j ∈ J ), depending on a parameter p > 0, that satisfy a number of
assumptions (see [13]) guaranteeing, in particular, that

Gj(x) � 0⇔ Φp(Gj(x)) � 0 ∀j ∈ J .

Thus, for any p > 0, problem (5.2) has the same solution as the following “augmented”
problem

min
x∈Rn

f(x)(5.3)

subject to
Φp(Gj(x)) � 0, j ∈ J .

A typical choice of Φp is

(5.4) Φp(A(x)) = −p2(A(x) − pI)−1 − pI .

The Lagrangian of (5.3) can be viewed as a (generalized) augmented Lagrangian
of (5.2):

(5.5) F (x, U, p) = f(x) +
∑
j∈J
〈Uj , Φp (Gj(x))〉Sm ;

here U = (U1, U2, . . . , UJ)� ∈ S
m1 × S

m2 × · · · × S
mJ are Lagrangian multipli-

ers associated with the inequality constraints. Defining G := (G1,G2, . . . ,GJ )� and
ΦpG := (Φp(G1), Φp(G2), . . . , Φp(GJ ))�, the augmented Lagrangian algorithm is de-
fined as follows.

Algorithm 5.1. Let x1 and U1 be given. Let p1 > 0, α1 > 0. For k = 1, 2, . . .
repeat until a stopping criterion is reached:

(1) Find x�+1 satisfying ‖∇xF (x�+1, U �, p�)‖ ≤ α�.

(2) U �+1 = DGΦp(G(x�+1); U �).

(3) p�+1 ≤ p� , α�+1 < α� .

The unconstrained minimization problem in step (1) is approximately solved by
the damped Newton method. Multiplier and penalty update strategies as well as local
and global convergence properties under standard assumptions are studied extensively
in [25]. Let us mention only that, imposing standard assumptions, one can prove that
any cluster point of the sequence {(x�, U �)}�>0 generated by Algorithm 5.1 is a KKT
point of problem (5.2). The proof given in [25] is an extension of results by Polyak
[20] and Breitfeld and Shanno [6].

Identifying S1 with R and introducing a slack variable, it is easy to see that prob-
lem (5.1) can be written in the form (5.2). Thus Algorithm 5.1 is directly applicable
to problem (5.1). In the following, we will demonstrate how the separable structure of
(5.1) can be exploited by the damped Newton method applied in step (1) of Algorithm
5.1:

Each search direction at a point x̂ is computed as a solution of a linear system of
the form

(5.6) ∇2
xF (x̂, U �, p�)d = −∇xF (x̂, U �, p�).
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In order to understand the structure of the system matrix ∇2
xF (x̂, U �, p�), we state F

explicitly for problem (5.1) (assuming |Imax| = 1 for simplicity):

F (x, u�, U �, p�) = fL,U,τsmat(x̄)(smat(x)) +
∑
k∈K1

u�jϕp�(gj(x)) +
∑
k∈K0

u�jϕp�(gj(x))

+
∑

j=1,...,m

〈
U �
j , Φp�(smat(x) − Y )

〉
+

∑
j=1,...,m

〈
U �
j+m, Φp�(Y − smat(x))

〉
;

here u� are Lagrangian multipliers associated with real valued constraints, ϕp� is the
scalar version of Φp� ,

K1 := {k ∈ {1, 2, . . . , K} | gk depends on exactly one matrix variable} ,
and K0 = {1, 2, . . . , K} \ K1. Now we define

q(x) :=
∑
k∈K0

u�kϕp�(gj(x)), r(x) := F (x, u�, U �, p�)− q(x).

Obviously, r(x) is separable w.r.t. x̄1, x̄2, . . . , x̄m. On the other hand, we obtain the
following for q(x):

∇2
xq(x) =

∑
k∈K0

u�k

(
ϕ′′
p�(gk(x))∇xgk(x)∇xgk(x)� + ϕ′

p�(gk(x))∇2
xxgk(x)

)
.

Now, defining β as a vector with entries β�k(x) := 1/(u�kϕ
′
p�(gk(x))) (k ∈ K0),

H�(x) := ∇2
xxr(x) +

∑
k∈K0

u�kϕ
′
p�(gk(x))∇2

xxgk(x)

and denoting by A�(x) the matrix with columns ∇xgk(x) (k ∈ K0) we are able to
prove the following result.

Proposition 5.2. Any vector d ∈ R
n̂ satisfying the equation

(5.7)
(

H�(x) A�(x)
A�,�(x) −diag(β)

)(
d
y

)
=
( −∇xF (x̂, U �, p�)

0

)

is a solution of the linear system (5.6). Moreover, the matrix H�(x) is separable w.r.t.
x̄1, x̄2, . . . , x̄m.

Proof. From the second line in system (5.7) we see that

(5.8) y = diag(β)−1A�,�(x)d.

Now, substituting y by the right-hand side of (5.8), the first row of (5.7) becomes(
H�(x) + A�(x)diag(β)−1A�,�(x)

)
d = −∇xF (x̂, U �, p�),

but this is exactly system (5.6).
Depending on the cardinality of the set K0, the system (5.7) is solved directly or

by the following strategy:
1. Compute (H�(x))−1∇xF (x̂, U �, p�) and (H�(x))−1A�(x).
2. Solve the system(

A�,�(x)(H�(x))−1A�(x)− diag(β)
)
y = (H�(x))−1∇xF (x̂, U �, p�).
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3. Compute d = −(H�(x))−1A�(x)y − (H�(x))−1∇xF (x̂, U �, p�).
The second variant can be viewed as a generalization of the dual technique used in
the original MMA paper [26].

6. FMO. We briefly introduce the FMO problem.
Let Ω ⊂ R

2 be a 2D bounded domain1 with a Lipschitz boundary. By u(x) =
(u1(x), u2(x)) we denote the displacement vector at a point x of the body under an
external load and by

eij(u(x)) =
1
2

(
∂ui(x)
∂xj

+
∂uj(x)

∂xi

)
for i, j = 1, 2

the associated (small-)strain tensor. We assume that our system is governed by linear
Hooke’s law; i.e., the stress is a linear function of the strain

σij(x) = Eijk�(x)ek�(u(x)) (in tensor notation),

where E is the elastic stiffness tensor. The symmetries of E allow us to write the
second order tensors e and σ as vectors

e = (e11, e22,
√

2e12)T ∈ R
3, σ = (σ11, σ22,

√
2σ12)T ∈ R

3 .

Correspondingly, the fourth order tensor E can be written as a symmetric (sym.)
3× 3 matrix

(6.1) E =

⎛
⎝E1111 E1122

√
2E1112

E2222

√
2E2212

sym. 2E1212

⎞
⎠ .

In this notation, Hooke’s law reads as σ(x) = E(x)e(u(x)).
Given a set of external load functions f� ∈ [L2(Γ)]2, � ∈ Llc = {1, 2, . . . , nlc},

where Γ is a part of ∂Ω that is not fixed by Dirichlet boundary conditions, we are
able to state for each load case � ∈ Llc a basic boundary value problem of the following
type:

Find u� ∈ [H1(Ω)]2, such that(6.2)

div(σ) = 0 in Ω,
σ · n = f� on Γ,
u� = 0 on Γ0,
σ = E · e(u�) in Ω .

Here Γ and Γ0 are open disjunctive subsets of ∂Ω. Applying Green’s formula, we
obtain the following so-called weak equilibrium equation:

Find u� ∈ V such that(6.3) ∫
Ω

〈E(x)e(u�(x)), e(v(x))〉dx =
∫

Γ

f�(x) · v(x)dx ∀v ∈ V ,

where V = {u ∈ [H1(Ω)]2 |u = 0 on Γ0} ⊃ [H1
0 (Ω)]2 reflects the Dirichlet boundary

conditions.

1The entire presentation is given for 2D bodies to keep the notation simple. Analogously, all this
can be done for 3D solids.
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In FMO, the design variable is the elastic stiffness tensor E which is a function of
the space variable x (see [2, 21]). The only constraints on E are that it is physically
reasonable, i.e., that E is symmetric and positive semidefinite. This gives rise to the
following definition:

E0 :=
{
E ∈ L∞(Ω)3×3 | E = E�, E � ρI a.e. in Ω

}
,

where ρ ∈ R
+ is a suitable nonnegative number and I denotes the identity matrix.

The choice of L∞ is due to the fact that we allow for maximal-material/minimal-
material situations. A frequently used measure for the stiffness of the material tensor
is its trace. In order to avoid arbitrarily stiff material, we add pointwise stiffness
restrictions of the form Tr(E) ≤ ρ, where ρ is a finite real number. Accordingly, we
define the set of admissible materials as

E :=
{
E ∈ L∞(Ω)3×3 | E = E�, E � ρI, Tr(E) ≤ ρ a.e. in Ω

}
.

The following result is an immediate consequence of the definition of E (see [17]).
Lemma 6.1. If ρ > 0, the bilinear form

aE : V × V → R, (w, v) �→
∫

Ω

〈E(x)e(w(x)), e(v(x))〉dx

is V-elliptic and bounded for all E ∈ E.
Now we are able to present the worst-case multiple-load FMO problem:

inf
u∈V,
E∈E

max
�∈Llc

∫
Γ

f�(x) · u�(x)dx(6.4)

subject to
u1, u2, . . . , unlc

solve equilibrium equations of form (6.3),
v(E) ≤ v̄ .

Here the volume v(E) is defined as
∫
Ω

Tr(E)dx and v̄ ∈ R is an upper bound on overall
resources. Moreover, the objective, the so-called worst-case compliance functional,
measures how well the structure can carry the loads f�, � ∈ Llc. As an alternative to
problem (6.4), one can also consider the weighted multiple-load FMO problem

inf
u∈V,
E∈E

∑
�∈Llc

w�

∫
Γ

f�(x) · u�(x)dx(6.5)

subject to
u1, u2, . . . , unlc

solve equilibrium equations of form (6.3),
v(E) ≤ v̄ ;

here the values w� ∈ R+ (� ∈ Llc) are given weights of the associated load cases. Note
that for � = 1 (single load FMO problem) both problems coincide.

The major concern of this article is to find an efficient procedure for the numer-
ical solution of the above FMO problems. Therefore, we continue directly with the
presentation of the discrete counterparts of problems (6.4) and (6.5). For a more
detailed analysis of the infinite dimensional problems the interested reader is referred
to [4, 29].

The most successful approach proposed for the numerical solution of problems
(6.4) and (6.5) is based on dualization and subsequent discretization; see [4, 29].
Having many advantages, this strategy turns out to have two major drawbacks:
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• The computational complexity depends cubically on the number of load cases
(see [14]). This makes the approach impractical for 3D problems with more
than a few (typically 3–5) load cases.
• It is difficult to apply the dual approach for problem statements extended

by additional constraints on the design variable E or the state variable u
(see, for instance, [12, 15]). Especially in the case of nonconvexity, the dual
formulation may become useless due to the existence of a duality gap.

Motivated by this, we propose to solve a discretized version of problem (6.4) (or
alternatively (6.5)) directly. We define the following finite element scheme, which is
based on the discretization schemes used in [4, 29]:

The design space Ω is partitioned into m elements called Ωi, i = 1, . . . , m. For
simplicity, we assume that all elements are of quadrilateral type of the same size
h ∈ R (otherwise we use the standard isoparametric concept; see, for instance, [7]).
We approximate the matrix function E(x) by a function that is constant on each
element, i.e., characterized by a vector of matrices E = (E1, . . . , Em) of its element
values. Hence the discrete counterpart of the set of admissible materials in algebraic
form is

(6.6) Ẽ =
{
E ∈ (S3)m

∣∣ Ei � ρI, Tr(Ei) ≤ ρ, i = 1, . . . , m
}

.

Moreover, the discrete resource constraint takes the form

m∑
i=1

Tr(Ei) ≤ V,

where V = hv̄ and v̄ is the upper bound on resources introduced in (6.5). Further we
assume that the displacement vectors u�(x) (� ∈ Llc) are approximated by continuous
functions that are bilinear in each coordinate on every element. Such functions can
be written as u�(x) =

∑n
i=1 u�,iϑi(x) for all � ∈ Llc, where u�,i is the value of u� at

the ith node and ϑi is a basis function with nodal interpolation property associated
with the ith node (for details, see [7]). Now each admissible displacement function
can be identified with a vector in R

n, where n = 2N −#(components of u� fixed by
Dirichlet boundary conditions) and N is the number of nodes (vertices of the elements
Ωi) in the discrete design space. For the discussion on other approximation schemes
and their relation to the Babuška–Brezzi condition, see, e.g., [23] and the references
therein.

Next we derive the discrete counterpart of aE(·, ·). Along with the family of basis
functions ϑl, l = 1, . . . , n, we define a 3× 2 matrix

B̄T
j =

⎛
⎜⎜⎝

∂ϑj
∂x1

0
1
2

∂ϑj
∂x2

0
∂ϑj
∂x2

1
2

∂ϑj
∂x1

⎞
⎟⎟⎠

and associate with each element Ωi a set Di of nodes belonging to this element. We
use a Gauss formula for the evaluation of the integral over each element Ωi, assume
that there are nig Gauss integration points on each element, and denote by xGi,k the
kth integration point associated with the ith element. Using this, we construct block
matrices Bi,k ∈ R

3×n composed of (3×2) blocks B̄j(xGi,k) at the jth position for every
j ∈ Di and zero blocks of the same size otherwise. Then the discrete counterpart of
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aE(·, ·), the stiffness matrix A, is

(6.7) A(E) =
m∑
i=1

Ai(E), Ai(E) =
nig∑
k=1

BT
i,kEiBi,k .

Finally, assuming the load functions f� (� ∈ Llc) to be linear on each element and iden-
tifying each such function with a vector f� ∈ R

n, the discrete compliance functionals
and equilibrium conditions read as

(6.8) f�
� u, A(E)u� = f�, � ∈ Llc,

respectively. Using the assumption ρ > 0, it follows from Lemma 6.1 that A(E) is
strictly positive definite, and we are able to eliminate u�, � ∈ Llc, from the equations
above and to rewrite the compliance functionals as

c�(E) := f�
� A−1(E)f� for all � ∈ Llc.

Thus, after discretization, problems (6.4) and (6.5) become
• discrete worst-case multiple-load FMO problem

min
E∈Ẽ

max
�∈Llc

f�
� A−1(E)f�(6.9)

subject to
m∑
i=1

Tr(Ei) ≤ V,

• discrete weighted multiple-load FMO problem

min
E∈Ẽ

∑
�∈Llc

w�f
�
� A−1(E)f�(6.10)

subject to
m∑
i=1

Tr(Ei) ≤ V.

Definition 6.2. Let x̄i ∈ R
6 for all i = 1, . . . , m, and define

c̃� :(R6)m → R

x = (x̄�
1 , . . . , x̄�

m) �→ c� ((smat(x̄1), . . . , smat(x̄m))) .

In the following lemma we summarize some useful properties of the compliance
functionals c� (k ∈ K).

Lemma 6.3. For all � ∈ Llc the following hold:
(a) c� is well-defined, infinitely often continuously differentiable, and convex on
Ẽ. Moreover, the formula

∂

∂Ei
c�(E) = −

nig∑
k=1

Bi,ku�(E)u�(E)�B�
i,k, u�(E) := A−1(E)f�,

holds true for all partial derivatives of c� and ∂
∂Ei

c�(E) is negative semidefinite
for all i = 1, 2, . . . , m and all E ∈ Ẽ .

(b) c̃� is infinitely often continuously differentiable and convex on

X :=
{
(x̄1, . . . , x̄m) | (smat(x̄1), . . . , smat(x̄m)) ∈ Ẽ

}
.

(c) The Hessian of c̃� is dense.
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Proof. We start with the proof of assertion (b): The global stiffness matrix A(E)
can be written as a linear operator of the form

A(E1, . . . , Em) =
m∑
i=1

6∑
j=1

(x̄i)jA
p(j),q(j)
i ,

where x̄i := svec(Ei), p(j) and q(j) are the row and column indices, respectively,
of the element (x̄i)j in the lower triangular part of the matrix Ei, and the matrices
A
p(j),q(j)
i are defined as

(6.11) A
p(j),q(j)
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nig∑
k=1

(Bi,k)�p(j)(Bi,k)q(j), p(j) = q(j),

nig∑
k=1

(Bi,k)�p(j)(Bi,k)q(j) + (Bi,k)�q(j)(Bi,k)p(j), p(j) �= q(j),

with (Bi,k)j denoting the jth row of Bi,k. Thus the mapping

Ã : (R6)m → S
n, x �→ A (smat(x̄1), . . . , smat(x̄m))

is linear in x := (x̄1, . . . , x̄m). Moreover, it follows from Lemma 6.1 that Ã(x) is
positive definite for all x ∈ X . Taking into account that the mapping A �→ A−1 is
convex (infinitely often continuously differentiable) on S

n
+ (see [11]) and writing c̃� as

c̃�(x) = 〈Ã−1 (x) , f�f
�
� 〉Sn ,

the assertion of part (b) follows from the fact that c̃� is the composition of a linear, a
convex (infinitely often continuously differentiable), and a linear function.

Next we prove (a): The well definedness follows directly from Lemma 6.1. The
differentiability and convexity follow from assertion (b). Using the matrices Aj,p

i

defined in (6.11) to rewrite Ai(E) =
∑

1≤j≤p≤3(Ei)j,pA
j,p
i , we obtain

∂

∂(Ei)j,p
c�(E) = −u�(E)�

(
∂

∂(E)j,p
A(E)

)
u�(E) = −u�(E)�Aj,p

i u�(E),

where u�(E) = A−1(E)f� and (Ei)j,p denotes the (j, p) element of the matrix Ei. Us-
ing the definition of Aj,p

i we can now conclude that ∂
∂Ei

c�(E) = −∑nig

k=1 Bi,ku�(E)u�
(E)�B�

i,k, and the negative semidefiniteness follows immediately from the dyadic
structure of the matrix u�(E)u�(E)�.

Finally, we show assertion (c): Using the same arguments as the proof of part
(a), we obtain

∂2

∂(xi)j∂(xp)q
c̃�(x) = 2u�(E)�Aj

i A−1(E) Aq
p u�(E),

which is in general a nonzero value.
The following corollary is a direct consequence of Lemma 6.3.
Corollary 6.4. Problems (6.9) and (6.10) are convex semidefinite programming

problems.
Remark 6.1. As a consequence of Corollary 6.4, one could try to apply an existing

nonlinear (convex) SDP solver directly in order to solve (6.9) or (6.10). This is,
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however, not recommended in practice with any SDP solver using explicit second-
order derivatives, due to Lemma 6.3(c). Experiments with an SDP solver avoiding the
calculation and storage of explicit second-order derivatives by Krylov-type methods
(see [16]) led to moderate success, as the effort for the approximation of ∇2c̃� turned
out to be too expensive. This was the reason why we decided to develop an SDP
solver that is solely based on first-order information.

7. Numerical experiments. The main goals of this section are to
• provide algorithmic details of our implementation of Algorithm 4.3,
• present the results of numerical experiments with Algorithm 4.3 applied to

FMO problems of the form (6.9).

7.1. Algorithmic details.
The choice of the asymptotes. As a consequence of Lemma 6.3(a) the formula for

the hyperbolic approximation of c� (� ∈ Llc) in the jth iteration reduces to

(c�)
L,τ
Ej (E) := c�(Ej)

+
m∑
i=1

〈
∇ic�(Ej), (Ej

i − Li)(Ei − Li)−1(Ej
i − Li)− (Ej

i − Li)
〉

S3

+
m∑
i=1

τi

〈
(Ei − Ej

i )
2, (Ei − Li)−1

〉
S3

.(7.1)

For this reason we neglect the upper asymptotes U below. We have investigated two
different types of schemes: a moving scheme and a constant scheme. For the moving
scheme we used direct generalizations of the update rules recommended in [27, 32].
In the case of the constant scheme we simply used

Lji = L0 ≺ ρI for all i ∈ I and all iterates j = 1, 2, 3, . . . .

The result of our experiments showed that (in sharp contrast to the original MMA/
SCP approach) the moving scheme brings almost no benefit compared to the constant
one. Additionally, the constant scheme has an important advantage: The feasible set
of the subproblems can be kept during all iterations. This allows for an extensive use of
warm starts when solving the inner convex semidefinite programs. As a consequence,
we observed a significant reduction in the number of inner iterations. This is of
particular importance, because the subproblem in FMO is much more expensive to
solve than, for example, in SIMP-based problems.

For this reason we report only on experiments with the constant scheme of asymp-
totes. The most efficient constant choice we found was L0 = 0. Note that the com-
bination of Algorithm 4.3 with this simple choice applied to FMO-type problems can
be interpreted as a direct generalization of CONLIN [8]. The latter choice leads to a
further simplification of (7.1):

(c�)τEj (E) := c�(Ej) +
m∑
i=1

〈
∇ic�(Ej), Ej

iE
−1
i Ej

i − Ej
i

〉
S3

+
m∑
i=1

τi

〈
(Ei − Ej

i )
2, E−1

i

〉
S3

, � ∈ Llc.
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The subproblems. Using the constant asymptote scheme described above, the
subproblems of (6.9) become

min
E∈Ẽ

max
�∈Llc

(c�)τEj (E)(7.2)

subject to
m∑
i=1

Tr(Ei) ≤ V .

During all iterations, we solve the subproblems approximately. We use the fol-
lowing strategy: We start with a moderate accuracy of ε = 10−3 for the KKT error
of (7.2). Whenever the calculated search direction fails to be a descent direction, we
decrease the precision by a constant factor. Lemmas 4.7 and 4.8 show that when we
solve the subproblem exactly, we end up with a descent direction of sufficient decrease.
Furthermore, it can be seen from the proof of Lemma 4.8 that the same holds true
for a perturbed solution, provided its solution is close enough to the exact solution.
Consequently, our simple strategy is guaranteed to terminate after a finite number of
steps with an acceptable descent direction.

The line search. Instead of preforming an exact minimization in step (4) of Algo-
rithm 4.3, we use a simple Armijo rule, guaranteeing sufficient descent. Our experience
shows that, already after few outer iterates of Algorithm 4.3, the step length αj = 1
is accepted in almost all iterates.

The choice of τ . The parameters τi (i ∈ I) are chosen such that the following
condition remains valid throughout all iterations:

−∇ic�(Ej) + τiI � δI (i ∈ I)
for all i ∈ I and all � ∈ Llc. A typical choice for δ is 10−4.

A practical stopping criterion. We use two stopping criteria for Algorithm 4.3.
The first one is based on the relative difference of two successive objective function
values. We consider this stopping criterion as achieved if the relative difference falls
below some given threshold ε1 (typically ε1 = 10−8). The second stopping criterion
is based on the following KKT-related error measures:

err1 =
∥∥∥∇L(Y l, ul, U l, U

l
)
∥∥∥ ,

err2 = max{gk(Y l) | k = 1, 2, . . . , K},
err3 = max

{
|ulkgk(Y l)|, |〈U l

j , Y
l
j −Y j〉|, |〈U

l

j , Y j−Y l
j 〉|
∣∣ k = 1, . . . , K, j = 1, . . . , m

}
,

where Y l is the approximate solution at iterate l; L is the Lagrangian associated with
problem (P) defined in section 2; and ul, U l, and U

l
are the corresponding vectors of

Lagrangian (matrix) multipliers associated with the constraint functions gk and the
lower and upper matrix bound constraints, respectively. Recall that the feasibility of
Y l w.r.t. the matrix bound constraints is maintained throughout all iterations. Now
we define our second stopping criterion as

(7.3)
1
3

3∑
i=1

erri ≤ ε2,

where a typical value for ε2 is 5 · 10−5. Note that we stop only when both stopping
criteria are satisfied simultaneously.
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The code. We have implemented the new algorithm in the C programming lan-
guage. In what follows we refer to the resulting code as Penscp.

7.2. Numerical studies with FMO problems. Before we start presenting the
numerical results we take a brief look at the (theoretical) computational complexity
of Algorithm 4.3, when applied to FMO problems of type (6.9).

Computational complexity. We split the whole process in two subtasks, namely,
model calculation and optimization. The model calculation includes the evaluation of
c�(E) (� ∈ Llc), the computation of all partial derivatives and some preassembling
steps for the hyperbolic approximations. The optimization covers the solution of a
subproblem of type (7.2). Clearly, the model calculation is dominated by the fac-
torization of the global stiffness matrix A(E). The factorization is performed by a
sparse Cholesky method (see [18]) whose complexity depends linearly on the number
of nonzero entries in A(E). From this, (6.7), (6.8), and Lemma 6.3 we conclude the
following: The computational complexity of the model calculation phase depends

• linearly on the number of elements in discretization,
• linearly on the number of load cases.

In the optimization phase, the most time-consuming steps are the calculation
of gradients and Hessians of the hyperbolic approximations and the factorization of
(5.7). Obviously, both types of operations depend

• linearly on the number of elements in discretization,
• linearly on the number of load cases.

Goals of the numerical experiments. The goals of the numerical experiments pre-
sented in the remainder of this section are

• numerical verification of the linear dependence of the computational complex-
ity of Algorithm 4.3 on the number of elements,
• numerical verification of the linear dependence of the computational complex-

ity of Algorithm 4.3 on the number of load cases,
• a comparsion with Moped3, the most recent implementation of the dual

method described in [4],
• the effect of a SIMP-like preprocessing step.

All experiments have been performed on a Sun Opteron machine with 8 Gbyte of
memory and processor speed of approximately 3 GHz.

2D examples. The goal of our first experiment is to verify the linear dependence
of the computational complexity of Algorithm 4.3 on the number of elements in the
finite element discretization. In order to do that, we solve several instances of the test
problem depicted in Figure 7.1 with an increasing number of elements. Moreover, we
compare the calculation times of Penscp and Moped3 on this example. The results
are summarized in Table 7.1. The meaning of columns 1 to 6 is the following: the
number of finite elements, the number of iterations performed by Penscp, the relative
precision reached by Penscp (w.r.t. a high quality approximation of the accurate
solution computed by Moped3), the KKT error given by (7.3), the computation time
required by Penscp, and the computation time required by Moped3.

For both codes we observe for a factor of 4 in the number of elements a corre-
sponding factor of 7–8 in the computational time. Thus the numerical experiment
approximately confirms an almost linear growth. Optimal density distributions ob-
tained from Experiment 1 are shown in Figures 7.2 and 7.3.

By means of our second experiment we try to verify the linear dependence of the
computational complexity of Algorithm 4.3 on the number of load cases. Therefore,
we solve the basic test with an increasing number of load cases. Again we compare
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Fig. 7.1. Basic test problem–mesh, boundary conditions, and forces.

Table 7.1

Experiment 1. 1.250–20.000 elements.

FEs Iter. Precision KKT error Time in sec. (opt/mod) Time in sec. Moped3

1.250 622 5.0e-5 4.5e-5 256 (175/81) 153
5.000 489 1.2e-4 5.0e-5 1.027 (653/374) 996

20.000 522 1.3e-4 2.5e-5 7.878 (6.120/1.758) 8.732

Fig. 7.2. 5000 elements, 4 load cases. Moped3 (left), Penscp (right).

Fig. 7.3. 20.000 elements, 4 load cases. Moped3 (left), Penscp (right).

Table 7.2

Experiment 2. 2–8 load cases.

# LC Iter. Precision KKT error Time in sec. (opt/mod) Time in sec. Moped3

2 543 1.4e-4 5.0e-5 585 (423/162) 182
4 489 1.2e-4 5.0e-5 1.027 (653/374) 996
8 370 1.0e-4 2.5e-5 1.319 (749/570) 7.212

the results of Penscp to Moped3. The results are summarized in Table 7.2. Note
that here and below # LC denotes the number of load cases.

Obviously, Penscp shows a much better behavior than Moped3 here. For a
factor of 2 in the number of load cases we observe only a factor of 1.4–2 in the
computational time. On the other hand, Moped3 shows the predicted quadratic to
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Fig. 7.4. 5.000 elements, 8 load cases. Moped3 (left), Penscp (right).

Table 7.3

Experiment 3. Accuracy and speed of convergence.

# Accurate digits # Iterations Rounded function value
1 2 2
2 10 1.5
3 107 1.50
4 288 1.499
5 727 1.4987
6 977 1.49873
7 1251 1.498732

cubic behavior: For a factor of 2 in the number of load cases we observe a factor
of 6–8 in the computational time. Optimal density distributions obtained from this
experiment are depicted in Figure 7.4.

In order to get an idea about the accuracy and the speed of convergence we can
reach by our method, we tried to solve the problem depicted in Figure 7.1 to higher
precision. This time we chose four load cases and a resolution of 1250 finite elements.
The result is outlined in Table 7.3: We are able to compute seven digits of accuracy.
In this example the error diminishes approximately with linear speed of convergence.
We observed very similar results for experiments with different numbers of load cases
and finer resolutions.

The goal of the fourth experiment is to test the effect of a preprocessing strategy
on the comparatively high number of outer iterations required by Penscp. We make
use of the following preprocessing strategy:

1. Run a few (10–20) steps of Algorithm 4.3 for a SIMP model obtained from
(7.2) by setting Ei = ρ2

i I for all i = 1, 2, . . . , m and letting
ρ = (ρ1, ρ2, . . . , ρm)� be the design variable.

2. Approximate material tensors using the formula

Ei ≈ ρi
#LC

∑
�∈Llc

ē(u�)ē(u�)T ,

where u� are displacements associated with the intermediate densities calcu-
lated in step 1 and ē(u�) is a corresponding normalized small-strain tensor.

For a motivation of the above strategy we refer the reader to [33]. Using preprocessing,
we computed our basic example with

• 5.000 finite elements and 8 load cases,
• 20.000 finite elements and 4 load cases.

Penscp was stopped after 150 iterations in both cases. The resulting density plots
are depicted in Figures 7.5 and 7.6.

It seems that the preprocessing strategy significantly improved the result after
150 iterations. In both cases we could save about 60 percent of the computation time.
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Fig. 7.5. 5.000 elements, 8 LC, with preprocessing. Moped3 (left), Penscp (right).

Fig. 7.6. 20.000 elements, 4 LC, with preprocessing. Moped3 (left), Penscp (right).

Fig. 7.7. Problem setting. ≈ 10.000 elements, 2 LC (top left), unfiltered density result Penscp

(top right), and filtered density plots (bottom).

3D experiments. We performed experiments with Penscp on two 3D examples.
In our first experiment we used a solid block discretized by approximately 10.000
finite elements. Moreover, we applied 2 load cases (see Figure 7.7, top left). Penscp

stopped after almost 500 iterations and approximately 1.5 hours of computation time.
Moped3 required already 8 hours. The problem setting as well as the density result
generated by Penscp can be seen in Figure 7.7.

In our second 3D experiment we used again a solid block, this time subjected to 4
load cases and discretized by approximately 20.000 finite elements. Penscp generated
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Fig. 7.8. Problem setting. ≈ 20.000 elements, 4 LC (top left), unfiltered density result Penscp

(top right), and filtered density plots (bottom).

a solution in approximately 4 hours. Moped3 failed for this example, because the
memory of 8 Gbyte was exceeded. An estimate based on the results from the 3D
experiment described above yields a computation time of approximately two weeks
for this example. The problem setting along with the density result computed by
Penscp is depicted in Figure 7.8.

8. Conclusion and outlook. We have developed a globally convergent method
for the minimization of convex nonlinear functions defined on matrix spaces over
convex sets described by (separable) convex constraints. The new method turned out
to be particularly efficient when applied to FMO problems with multiple load cases.
The key strategy of the new method is to replace the original optimization problem
by a sequence of convex semidefinite programs. The structure of these semidefinite
programs has a strong influence on the efficiency of the overall method. For example,
we have seen that an efficient solution is possible if all constraints are separable or even
linear. If this is not the case, or more generally, if one wants to deal with nonconvex
functions, the situation is more involved. The authors are currently investigating a
generalized algorithmic concept for this case (see [24]).

Acknowledgments. The authors would like to thank two anonymous referees
for their helpful comments. The 3D figures were produced using the FMStudio with
kind permission of RISC Software GmbH.
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Abstract. This paper concerns the stability optimization of (parameterized) matrices A(x), a
problem typically arising in the design of fixed-order or fixed-structured feedback controllers. It is
well known that the minimization of the spectral abscissa function α(A) gives rise to very difficult
optimization problems, since α(A) is not everywhere differentiable and even not everywhere Lipschitz.
We therefore propose a new stability measure, namely, the smoothed spectral abscissa α̃ε(A), which
is based on the inversion of a relaxed H2-type cost function. The regularization parameter ε allows
tuning the degree of smoothness. For ε approaching zero, the smoothed spectral abscissa converges
towards the nonsmooth spectral abscissa from above so that α̃ε(A) ≤ 0 guarantees asymptotic
stability. Evaluation of the smoothed spectral abscissa and its derivatives w.r.t. matrix parameters
x can be performed at the cost of solving a primal-dual Lyapunov equation pair, allowing for an
efficient integration into a derivative-based optimization framework. Two optimization problems are
considered: On the one hand, the minimization of the smoothed spectral abscissa α̃ε(A(x)) as a
function of the matrix parameters for a fixed value of ε, and, on the other hand, the maximization
of ε such that the stability requirement α̃ε(A(x)) ≤ 0 is still satisfied. The latter problem can be
interpreted as an H2-norm minimization problem, and its solution additionally implies an upper
bound on the corresponding H∞-norm or a lower bound on the distance to instability. In both cases,
additional equality and inequality constraints on the variables can be naturally taken into account
in the optimization problem.
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1. Introduction. Stability optimization of linear and nonlinear continuous-time
dynamic systems is both a highly relevant and a difficult task. The optimization
parameters often stem from a feedback controller, which can be used to optimize either
a performance criterion or the asymptotic stability around a certain steady state.
When robustness against perturbations of the system must be taken into account
also, the resulting optimization problem becomes even more challenging.

Assuming an adequate parameterization of the desired feedback controller, the
problem of finding a suitable steady state along with a stabilizing feedback controller
can essentially be transformed into a nonlinear programming problem. By collecting
all optimization variables in a vector x, we can summarize the described stability
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optimization problem as

(1.1) min
x

Φstab(A(x)), subject to (s.t.) g(x) = 0, h(x) ≤ 0,

where A(x) is the system matrix depending smoothly on x and the function Φstab(·)
expresses our desire to optimize stability, under the given constraints. In the field of
linear output feedback control, closed-loop system matrix A(x) will typically be of
the form A + BKC, with A the open-loop system matrix, B and C the input and
output matrices, and K containing the controller parameters x to be optimized.

The most straightforward choice for the objective function Φstab is related to the
eigenvalues of A, namely, the spectral abscissa α(A). This value is defined as the real
part of the rightmost eigenvalue of the spectrum Λ(A) = {z ∈ C : det(zI −A) = 0},
that is, α(A) = sup{�(z) : z ∈ Λ(A)}.

The spectral abscissa is, in general, a non-Lipschitz and nonconvex function of A
[13, 14] and therefore typically a very hard function to optimize. Nonetheless, recent
developments have led to algorithms that are able to tackle such nonsmooth objective
functions [8, 12, 25, 26]. The extension to infinite-dimensional systems has been made
in [29]. Still, the spectral abscissa is also known to perform quite poorly in terms of
robustness against parameter uncertainties. A tiny perturbation or disturbance to a
parameter of a system that was optimized in the spectral abscissa can possibly lead
to instability.

For this reason, more robust approaches have been proposed. Amongst those,
the most prominent are H∞-optimization [1, 2, 7, 23, 24] and, closely related, the
minimization of the pseudospectral abscissa [10, 28]. As these robust optimization
formulations are connected to maximizing the distance to instability of the system
under consideration, they inherently take the effect of perturbations into account in
the stability measure. However, their objective functions still suffer from nonsmooth-
ness and associated high computational costs in optimization. Throughout this paper,
we will use standard notation αε for the pseudospectral abscissa, not to be confused
with our symbol for the smoothed spectral abscissa, namely, α̃ε. Another, albeit less
well-known robustness measure, is the robust spectral abscissa, denoted by αδ as in [8]
and is based on Lyapunov variables.

The paper is organized as follows. In section 2, we define the smoothed spectral
abscissa, and we outline its most important properties. Section 3 discusses how to
efficiently compute this newly defined stability measure along with its derivatives. In
section 4, we explain how the smoothed spectral abscissa can be used to formulate
optimization problems dealing with robust stability, and section 5 draws a relation
with the pseudospectral abscissa. Finally, we illustrate our stabilization method by
treating two numerical examples in section 6.

2. The smoothed spectral abscissa. In this section, we introduce the notion
of the smoothed spectral abscissa as a new stability measure that is not susceptible to
nonsmoothness like the spectral abscissa and the H∞-norm are. It can, in addition,
be attributed with certain beneficial robustness properties. We will use several well-
known principles from robust control for linear systems such as stability, H2-norm,
controllability, and observability. See, e.g., [30] for an introduction. At the basis of
the smoothed spectral abscissa lies the following stability criterion.

Lemma 2.1. For any submultiplicative matrix norm ‖ · ‖, matrix A ∈ R
n×n is

Hurwitz stable if and only if integral
∫∞
0
‖ exp(At)‖2 dt is finite.

Proof. Suppose
∫∞
0
‖ exp(At)‖2 dt is finite, then ‖ exp(At)‖ → 0 for t → ∞. It

is well known that, for any norm ‖ · ‖, this is equivalent to α(A) < 0; see, e.g., [21].
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Conversely, suppose that α(A) < 0 and let ‖ · ‖ be any submultiplicative norm, then
there exists 0 < γ < ∞ such that ‖ exp(At)‖ ≤ γ exp(α(A)t/2) ∀ t ≥ 0; see, e.g.,
[16, Chap. 1, sect. 3]. From this, we can derive that

∫∞
0
‖ exp(At)‖2 dt ≤ −γ2/α(A)

<∞.
Inspired by this observation, we let f : R

n×n × R ∪ {∞} → R ∪ {∞} be the
matrix function that uses Frobenius norm ‖M‖2F := trace (MtM) and that takes as
its arguments, next to the matrix A, also a real-valued relaxation parameter s:

(2.1) f(A, s) :=
∫ ∞

0

‖V e(A−sI)tU‖2F dt.

Here, matrices U and V are to be seen as respective input and output weighting
matrices, with (A, U) controllable and (V, A) observable. It is easy to see that f(A, s)
is nothing else than the squared weighted and relaxed H2-norm of a system, with
transfer function Hs(z) = V (zI − (A− sI))−1

U , i.e.,

(2.2) f(A, s) = ‖Hs‖2H2
.

We continue with the following properties for the function f(A, s).
Lemma 2.2. ∀A ∈ R

n×n : {f(A, s) : s > α(A)} = R
+ \ {0}.

Proof. If s > α(A), matrix A − sI is stable, and therefore f(A, s) is finite by
Lemma 2.1. Additionally, f(A, s) tends to infinity and to zero for s → α(A) and
s→∞, respectively.

Lemma 2.3. ∀s > α(A) : ∂f(A, s)/∂s < 0 and ∂2f(A, s)/∂s2 > 0.
Proof. This can be verified by differentiating the integral in (2.1) with respect to

s once and twice, respectively.
These last two properties allow us to introduce the implicit function of the relation

f(A, s) = ε−1 w.r.t. the relaxation argument s, as it is well defined on the whole
domain, that is, for any ε > 0 and for any matrix A ∈ R

n×n. We will call this function
the “smoothed spectral abscissa,” analogously to the smoothed spectral radius for
discrete time systems [15].

Definition 2.4. The smoothed spectral abscissa is defined as the mapping α :
R
n×n × R

+ \ {0} → R, (A, ε) �→ α̃ε(A) that uniquely solves

(2.3) f(A, α̃ε(A)) = ε−1.

Because f(A, s) is analytic in both its arguments for any s > α(A), it follows
from the implicit function theorem that α̃ε(A) is analytic on its whole domain ε > 0,
A ∈ R

n×n. Moreover, it has the following additional properties.
Theorem 2.5. α̃ε(A) is an increasing function of ε, that is, ∂α̃ε(A)/∂ε > 0.
Proof. Differentiating (2.3) on both sides w.r.t. ε, we obtain

df(A, α̃ε(A))
dε

=
∂f(A, s)

∂s

∂α̃ε(A)
∂ε

= −ε−2 < 0,

from which the proposition holds by Lemma 2.3.
Theorem 2.6. ∀ ε > 0 : α̃ε(A) > α(A) and limε→0 α̃ε(A) = α(A).
Proof. These two properties follow from the fact that f(A, s) is finite and de-

scending for s > α(A) but tends to infinity as s approaches α(A).
Also note that this last theorem implies that a nonpositive smoothed spectral

abscissa guarantees that the underlying system is asymptotically stable. The above
definition and properties are illustrated in Figure 2.1.
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s

f(A, s)

ε−1

α(A) α̃ε(A)

Fig. 2.1. Typical behavior of function f(A, s) as a function of s. The smoothed spectral abscissa
α̃ε(A) is the abscissa of the point where this function reaches ε−1.

3. Computing the smoothed spectral abscissa and its derivatives. Hav-
ing defined the smoothed spectral abscissa, we now take a look at its computation.
As explained in the previous section, this involves solving the smooth but nonlinear
equation f(A, s) = ε−1 for s. Therefore, we first give some properties of function
f(A, s) regarding its evaluation and its derivatives.

Lemma 3.1. For all s > α(A), there exist symmetric n × n matrices P and Q
such that

f(A, s) = trace (V PV t) = trace (UtQU) ,(3.1a)
∂f(A, s)

∂s
= −2 trace (QP ) = −2 trace (PQ) ,(3.1b)

∂f(A, s)
∂A

= 2QP,(3.1c)

where P and Q satisfy the primal-dual Lyapunov equation pair

0 = L(P, A, U, s),(3.2a)
0 = L(Q, At, V t, s),(3.2b)

with L defined as

L(P, A, U, s) := (A− sI)P + P (A− sI)t + UUt.

Proof. The first part follows immediately by writing out the Frobenius norm
in (2.1):

f(A, s) = trace
(

V

∫ ∞

0

e(A−sI)tUUte(A−sI)tt dt V t

)
,

and, by the well-known fact that, since A − sI is stable, the above integral can be
identified as the trace of P , the solution of (3.2a) (see, for instance, [18, 30]). Note
that solving dual Lyapunov equation (3.2b) computes a matrix Q that solves the dual
integral

Q =
∫ ∞

0

e(A−sI)tt V tV e(A−sI)t dt.
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Since A is fixed in the partial derivative ∂f(A,s)
∂s , we can regard f as a function

of P , where P depends on s through the Lyapunov relation L(P (s), A, U, s). Rather
than computing this partial derivative directly as

∂f(A, s)
∂s

=
d
ds

trace (V P (s)V t) = trace
(

V
dP

ds
V t

)
,

with dP
ds the solution of the Lyapunov equation (A−sI)dP

ds + dP
ds (A−sI)t−2P = 0, we

choose to use an adjoint differentiation technique. Vectorizing matrix P in an n2 × 1
vector p = vec(P ), we can write

(3.3)
∂f

∂s
=

∂f

∂p

∂p

∂s
= −∂f

∂p

(
∂�

∂p

)−1
∂�

∂s
,

where � := vec(L(P, A, U, s)) represents the vectorized primal Lyapunov equation
(3.2a). Making use of the fact that vec(MXNT ) = (N⊗M) vec(X), where ⊗ denotes
the Kronecker product [17], we can make � explicit in p and, as a result, arrive at the
following n2 × n2 linear system:

�(p, A, U, s) =
∂�

∂p
p + vec(UUt) = 0,

with ∂�
∂p = (A− sI)⊗ I + I ⊗ (A− sI). For the dual Lyapunov equation, we similarly

obtain

�(q, At, V t, s) =
∂�

∂q
q + vec(V tV ) = 0,

with ∂�
∂q = (A− sI)t⊗ I + I⊗ (A− sI)t. It is easily verified that ∂�

∂q = ∂�
∂p

t

. Replacing
∂�
∂q in the relation �(q, At, V t, s) = 0 and using, in addition, the fact that vec(V tV )

equals ∂f
∂p

t

, we find that

∂�

∂p

t

q +
∂f

∂p

t

= 0 ⇔ qt = −∂f

∂p

(
∂�

∂p

)−1

.

Combining this with (3.3), along with ∂�
∂s = −2p, finally gives

∂f

∂s
= qt(−2p) = −2 vec(Q)t vec(P ) = −2 trace (QP ) .

For the third part of the proof, i.e., the proof of the expression for the derivative
w.r.t. A, we can use the same adjoint differentiation technique. Here, we again let f
depend on vectorized matrix p = vec(P ), which now depends on a = vec(A) according
to relation �(p(a), a, s) = 0. Using the previous results, we obtain the following
expression for ∂f

∂a := vect
(
∂f
∂A

)
:

(3.4)
∂f

∂a
=

∂f

∂p

∂p

∂a
= −∂f

∂p

(
∂�

∂p

)−1
∂�

∂a
= qt

∂�

∂a
.

To find ∂�
∂a , we first have to make � explicit in a, which yields

(3.5) �(P, a, U, s) =
∂�

∂a
a + vec(UUt) = 0, with

∂�

∂a
= (P ⊗ I) + (I ⊗ P )Π,
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where Π denotes the symmetric permutation matrix that satisfies vec(At) = Πvec(A),
e.g., Π = Sn,n in [20]. Substituting in (3.4) gives

vect

(
∂f

∂A

)
=
(

∂�

∂a

t

q

)t

= [vec(QP ) + Πt vec(PQ)]t = 2 vect (QP ) = vect (2QP ) .

By comparison of both sides, we finally obtain that

∂f

∂A
= 2QP,

which concludes the proof.
The relatively cheap computation of f(A, s) and its derivative w.r.t. s enables

us to efficiently solve the nonlinear equation f(A, s) = ε−1 by the use of standard
root-finding methods and thus evaluate the smoothed spectral abscissa α̃ε(A). Specif-
ically, we can use a Dekker–Brent-type method [6], provided that we establish a root
bracketing interval first, or Newton’s method if we want to exploit the availability
of the derivatives. For further elaboration on the computational issues involving the
smoothed spectral abscissa, see section 6.3.

As we will want to use derivative-based optimization methods later on to exploit
the smoothness of the smoothed spectral abscissa, we need to be able to compute also
the derivative of α̃ε(A) w.r.t. A. Fortunately, this can be done at almost no extra cost.
Indeed, the same ingredients that were needed for the evaluation of α̃ε(A), namely, the
solutions P and Q of one primal-dual Lyapunov equation pair, give us direct access
to the derivative of α̃ε(A) w.r.t. A, as expressed in the following theorem.

Theorem 3.2. For fixed ε, the derivative of the smoothed spectral abscissa α̃ε(A)
w.r.t. A equals

∂α̃ε(A)
∂A

=
QP

trace (QP )
,

where P and Q satisfy the Lyapunov equation pair (3.2a)–(3.2b) for s = α̃ε(A).
Proof. Differentiating the implicit equation f(A, s) = ε−1 w.r.t. A and using the

chain rule, we obtain

∂α̃ε(A)
∂A

= −
(

∂f(A, s)
∂s

)−1(
∂f(A, s)

∂A

)
.

Recalling (3.1b) and (3.1c) of Lemma 3.1, the result follows directly.
Remark 1. Suppose A depends on an m × 1 parameter vector x, then a direct

approach to compute the derivatives w.r.t. to these parameters would require solving
m + 1 Lyapunov equations with different right-hand sides, instead of m + 1 matrix
multiplications of ∂A/∂x with ∂α̃ε/∂A.

4. Robust stability optimization. When it comes to algorithmic optimiza-
tion, a first major advantage of the smoothed spectral abscissa criterion is that it is
differentiable everywhere and that its derivatives can be computed efficiently. This al-
lows us to use derivative-based methods without any restriction. Additionally, due to
its differentiable dependence on A and its connection with the H2-norm, it is expected
to be a more robust measure for stability than the spectral abscissa. We will present
two smooth formulations of stability optimization problem (1.1): one that focuses on
mere stabilization and one that will turn out to perform an H2-norm minimization.
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The first variant is to simply choose a fixed ε > 0 and then solve

(4.1) min
x

α̃ε(A(x)) s.t. g(x) = 0, h(x) ≤ 0.

Here, α̃ε(A(x)) is indirectly dependent on matrix parameter vector x, as it is implicitly
defined as the solution of the relation f(A(x), s) = ε−1 w.r.t. s. By decoupling this
implicit relation into a constraint, we can formulate the problem alternatively as

(4.2) min
x

s, s.t. f(A(x), s) = ε−1, g(x) = 0, h(x) ≤ 0,

which is more amenable for an SQP optimization framework.
Should problem (4.1) or (4.2) not result in a negative optimal value for the cho-

sen ε, then one can try again with a smaller ε. Note also that, if the sole goal is
to achieve a stable system, one may terminate the optimization procedure once the
smoothed spectral abscissa becomes smaller than zero.

In the minimization formulation of the smoothed spectral abscissa with fixed ε,
the choice of ε is somewhat arbitrary. As indicated by Theorem 2.6, α̃ε(A) becomes
smoother—and thus presumably a more robust measure for stability—with increasing
values for ε > 0. Thus, we might alternatively search for the largest ε so that the
stability certificate α̃ε(A) ≤ 0 still holds. This leads to a second optimization problem:

(4.3) max
x,ε

ε s.t. α̃ε(A(x)) ≤ 0 and g(x) = 0, h(x) ≤ 0.

Since α̃ε(A) is a continuously growing function of ε, the constraint in problem (4.3)
will always be active at its optimizer (x∗, ε∗). Hence, it is easily seen that the solution
of the first problem (4.1), with ε fixed to ε∗, will be exactly zero and that, in addition,
its minimizer will be the same as the one for problem (4.3), namely, x∗. Succinctly,

x∗ = arg min
x

α̃ε∗(A(x)) and α̃ε∗(A(x∗)) = 0.

Problem (4.3) can thus be solved by finding the ε for which the resulting minimal
smoothed spectral abscissa is zero, which can be implemented by bisecting with re-
spect to ε. The activity of the stability constraint also leads to the following nice
interpretation of problem (4.3).

Theorem 4.1. Any solution x∗ that solves problem (4.3) also solves the H2-norm
optimization of a system with transfer function H(x)(z) := V (zI −A(x))−1U , i.e.,

x∗ = arg min
x
‖H(x)‖H2 , s.t. g(x) = 0, h(x) ≤ 0,

and the solution ‖H(x∗)‖H2 is equal to
√

1/ε∗.
Proof. Taking the inverse of the objective function in problem (4.3) and incor-

porating the fact that the stability constraint will be active, this problem can be
rewritten as the minimization of the function f(A(x), 0), subject to the constraints
g and h, and additionally restricting x to values for which A(x) is stable. This is,
by (2.2), equivalent to minimizing the squared H2-norm of the system with transfer
function H.

Remark 2. Solving problem (4.3) with the restriction α̃ε < s (with s < 0) would
minimize the H2-norm of a system with the shifted transfer function Hs.
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5. Relation with the pseudospectral abscissa. We will now draw a rela-
tionship between the smoothed spectral abscissa α̃ε(A) and the pseudospectral ab-
scissa αε(A), the latter being defined as

αε(A) := sup{�(z) : z ∈ Λε(A)}, where Λε(A) = {Λ(X) : ‖X −A‖2 ≤ ε}.
For this section, we take the restriction U = V = I, so the transfer function becomes
H(z) = (zI −A)−1. Define the H∞-norm as

‖H‖H∞ = sup
�(z)=0

‖H(z)‖2.

We then have the following well-known equivalency involving αε(A) and the corre-
sponding H∞-norm [10]:

(5.1) αε(A) < 0 ⇔ ‖H‖H∞ < ε−1.

We can also interpret this in terms of the H∞-norm of a shifted matrix A− sI. The
relation then becomes

(5.2) αε(A− sI) < 0 ⇔ αε(A) < s ⇔ ‖Hs‖H∞ < ε−1,

where Hs(z) := (zI − (A − sI))−1 = ((z + s)I − A)−1. In other words, the pseudo-
spectral abscissa is the minimal shift-to-the-left s for which the “shifted” H∞-norm is
smaller than ε−1. Similarly as in Remark 2, if follows from (5.2) that the minimization
of αε amounts to minimizing the H∞-norm of the shifted system Hs, where s =
min αε.

Going back to the definition of the smoothed spectral abscissa α̃ε(A) and taking
into account that f is a decreasing function of s (Lemma 2.3), we derive a similar
relation as we did in (5.2):

(5.3) α̃ε(A) < s ⇔ f(A, s) = ‖Hs‖2H2
< ε−1.

Analogously, we can regard the smoothed spectral abscissa as the minimal shift s for
which ‖Hs‖2H2

lies below the bound ε−1 (see also Figure 2.1). Thus, αε(A) and α̃ε(A)
are both relaxations of the spectral abscissa in the sense that they are both induced
by placing a bound on a norm (H∞ and H2, respectively) that goes to infinity when
approaching instability. This analogy enables us to relate these two robust stability
measures.

Theorem 5.1 (relation to pseudospectral abscissa). For s > α(A) and for
U = V = I, the following holds:

‖Hs‖H∞ < 2‖Hs‖2H2
(5.4a)

αε/2(A) < α̃ε(A).(5.4b)

Proof. The first inequality is based on [3], where 2λmax(Q2)
1
2 is established to be

an upper bound on the H∞-norm of an unweighted system with transfer function Hs,
where Q satisfies (3.2b). Since Q is a positive definite matrix, we can deduce from
this the following:

‖Hs‖H∞ ≤ 2λmax(Q) < 2 trace (Q) .

This proves (5.4a) directly by Lemma 3.1(a) and by (2.2). Suppose then, by (5.3),
that, for s = α̃ε(A), it is true that ‖Hs‖2H2

= ε−1. Using (5.4a) in connection with
(5.2), assertion (5.4b) follows.
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This property has an important implication in terms of robust optimization. It
shows that the squared H2-norm constitutes an upper bound on the H∞-norm, which
is directly related to the distance to instability of a system. By minimizing the first
norm, one could expect that the second norm should also go down.

On top of this rather intuitive result, (5.4b) together with (5.1) provides us with
a guarantee w.r.t. the H∞-norm once the smoothed spectral abscissa is negative.
Indeed, if we have that α̃ε(A(x)) < 0 for some x, we are not only sure that the system
with system matrix A(x) will be a stable one, but also that this system will have an
H∞-norm that is smaller than 2/ε. In other words, we can be certain that the distance
to instability of the system will be at least ε/2.

6. Numerical examples. We will now put theory into practice by treating
two control examples using the smoothed spectral abscissa as the stability criterion.
First, we will illustrate the theory behind the smoothed spectral abscissa by use of
an academic example. Next, we will treat a more realistic example, namely, a turbo
generator model. We conclude by making a comparison of the computational cost of
the smoothed spectral abscissa in relation with other robust stability measures. All
computations were done with matlab R2008a.

6.1. A simple state feedback controlled system. Consider the following
two-parameter linear state feedback controlled system, with a closed-loop system ma-
trix A + BK, and where

(6.1) A =

⎡
⎣ 0.1 −0.03 0.2

0.2 0.05 0.01
−0.06 0.2 0.07

⎤
⎦ , B =

1
2

⎡
⎣−1
−2
1

⎤
⎦ , Kt =

⎡
⎣x1

x2

1.4

⎤
⎦.

Figure 6.1 shows, as a function of the control parameters, the spectral abscissa (ε = 0)
in comparison with the smoothed spectral abscissae for three different smoothing levels
(ε = 4, 8, 12 · 10−3). For ε = 4 · 10−3, the corresponding pseudospectral abscissa, i.e.,
with an ε half as large, is also plotted. In the left frame, x2 = 1.25 is held fixed. In the
right frame, both x1 and x2 are free, and the boundaries of the stability regions, that
is, the regions where the respective measures are negative, are drawn. On both figures,
we clearly observe the smooth behavior of α̃ε in contrast with the nonsmoothness of
the spectral and pseudospectral abscissa.
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Fig. 6.1. Evolution with respect to x1 (left) and stability regions (right) of the spectral abscissa
α (with �), pseudospectral abscissa αε/2 (with �), and smoothed spectral abscissa α̃ε (with ◦) of the

example in section 6.1 with smoothing parameter ε = 4 · 10−3. In addition (with •), two smoothed
spectral abscissae for ε = 8 · 10−3 and ε = 12 · 10−3.
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Fig. 6.2. The minimal smoothed spectral abscissa α̃ε of the turbo generator model, for ε ranging
from 10−10 to 10−1, and the corresponding spectral abscissa α evaluated in each of the minimizers.

The ordering of α̃ε, αε/2, and α as stated by Theorems 2.6 and 5.1 is also con-
firmed. On the left, the curve of the smoothed spectral abscissa is everywhere above
the other two curves and on the right, the α̃ε-stability region is strictly contained
within the stability regions of the pseudospectral and, consequently, also of the spec-
tral abscissa.

6.2. Turbo generator model. Next, we treat problem “TG1” of Leibfritz’s
control problem database [19], which models a nuclear powered turbo generator by a
linear system of dimension 10 with four control parameters. This system has already
been used as an example in [9] for robust stability optimization using the pseudospec-
tral abscissa in combination with the gradient sampling algorithm.

Figure 6.2 shows the behavior of the solutions to a minimization of the smoothed
spectral abscissa α̃ε for a dense set of smoothing parameters ε between 10−1 and
10−10, i.e., ranging from relatively large to very small. It is immediately verified that
the minima of the smoothed spectral abscissa decrease monotonically for ε becoming
smaller. Next to the minima, we also plotted the evolution of the corresponding
spectral abscissae evaluated at each of these minimizers. We can see that, although
α is always strictly smaller than α̃ε, it is not guaranteed to decrease monotonically,
which is, for example, the case for large ε. For ε→ 0, however, the gap between the two
becomes tighter and tighter. Of course, as the smoothed spectral abscissa converges to
the spectral abscissa when ε approaches zero, the α̃ε-minimization problem becomes
more nonsmooth and thus harder.

To analyze this, Table 6.1 shows the results of a standard BFGS minimization
of α̃ε for 11 selected values of ε and with random starting parameters x. Next to the
resulting minima for each ε, the number of iterations (averaged out over ten random
starting points) needed to solve the respective optimization problems is listed. For
small ε and consequently, poor smoothing, this number becomes huge. However,
having the smoothing parameter at hand to tune the level of smoothing, the amount
of required iterations can be drastically decreased by following a homotopy strategy,
namely, iteratively decreasing ε and each time using the minimizer of the previous
problem as the starting point. This is confirmed in Table 6.1, where the number of
iterations required for this homotopy strategy and the resulting minima are listed
next to the ones for which random starting points were used.
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Table 6.1

Solutions to the minimization of the smoothed spectral abscissa of the turbo generator model
for 11 designated ε-values (without homotopy/with homotopy) and the corresponding pseudospectral
and spectral abscissae.

log10 ε minx α̃ε(x) Its. αε/2(x∗) α(x∗)

0 86.920558/ 86.920558 35/ 32 4.170208 9.899472
−1 23.951317/ 23.951317 37/ 33 5.267947 5.447648
−2 3.925292/ 3.925292 29/ 29 −0.327800 −0.272926
−3 −0.508181/−0.508181 34/ 62 −0.600857 −0.598826
−4 −1.107119/−1.107119 69/ 54 −1.125056 −1.124731
−5 −1.328287/−1.328287 104/ 80 −1.427324 −1.426787
−6 −1.694445/−1.694445 102/ 65 −1.864124 −1.864049
−7 −1.938475/−1.938475 252/ 57 −1.955631 −1.955624
−8 −1.987303/−1.987303 292/125 −1.988801 −1.988801
−9 −1.996336/−1.996246 1522/ 51 −1.996542 −1.996542
−10 −1.998646/−1.998587 1827/ 47 −1.998680 −1.998680

It is known that minimization of the pseudospectral abscissa produces a balance
between the asymptotic and the initial decay rate for different ε. In particular, min-
imizing αε amounts to the minimal spectral abscissa for ε → 0, and αε minimizes
the H∞-norm if ε is such that minx αε = 0; see [10]. In our case, we obtain a simi-
lar trade-off by minimizing the smoothed spectral abscissa. For ε going to zero, we
also converge to the minimal spectral abscissa, and, for a particular value of ε, the
H2-norm is minimized. By the relation αε/2 < α̃ε, it is reasonable to expect that
the pseudospectral abscissa, evaluated in the minimizers of minx α̃ε(x), will also be
pushed down when α̃ε is minimized for increasingly smaller ε. This is confirmed by
the fourth column in Table 6.1.

To study the behavior of the eigenvalues and corresponding pseudospectra in the
minimizers of the smoothed spectral abscissa, Figures 6.3(a)–(d) depict the pseu-
dospectra at four α̃ε-minimizers, namely, for ε = 2 · 10−1,−3,−5,−7. For the first value
of ε, both the smoothed and spectral abscissa are positive and the minimizer is not
stabilizing, as seen in the spectrum plotted in Figure 6.3(a). For ε = 2 · 10−3, the
minimal smoothed spectral abscissa equals −0.0270 . . . , which guarantees a stable
system. As seen in Figure 6.3(b), the eigenvalues are indeed all in the left half com-
plex plane. Since the minimum is very close to zero, we can expect 2 ·10−3 to be close
to the maximal ε for which a stabilizing solution can be found. Solving optimization
problem (4.3) yields an optimal value for ε of 2.048 ·10−3, which is indeed only slightly
higher. Note that this corresponds to a minimal H2-norm of approximately 22. A
further decrease of ε results in smaller and smaller minimal smoothed spectral abscis-
sae. As observed in the two bottom frames of Figure 6.3, the rightmost eigenvalues
of the optimal spectra become more and more aligned on a vertical line, indicating
convergence to the typical spectrum configuration for a minimized spectral abscissa.
Figures 6.3(b)–(c)–(d) thus represent three instances out of the range of stabilizing
solutions that compromise between a minimal spectral abscissa on the one hand and
a minimal H2-norm on the other hand.

From relation (5.2), we can deduce that the H∞-norm equals γ−1 for which γ
corresponds to pseudospectrum Λγ that is exactly contained in the left half complex
plane. If we have a closer look at the last three frames of Figure 6.3, we see that this
is the case for the pseudospectra with γ = 10−1.2, 10−1.6, and 10−2, indicating that
the H∞-norm grows as ε is decreased. So, although the H∞-norm was not minimized
here, the set of smoothed spectral abscissa minimizers appears to result in the same
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(c) ε = 2 · 10−5
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(d) ε = 2 · 10−7

Fig. 6.3. Boundaries of the pseudospectra Λγ of the turbo generator model for values of γ
as indicated in the right-hand side color bar. The frames correspond to four sets of controller
parameters that were obtained by minimizing α̃ε with indicated ε.

qualitative H∞ behavior as would be the case for a range of pseudospectral abscissa
minimizations; see [9].

Let us now investigate the H2- and H∞-norms of the two sets of stabilizing
minimizers, one belonging to the smoothed spectral abscissa and the other to the
pseudospectral abscissa. We denote them as functions χ∗

1(ε) and χ∗
2(ε), depending on

the ε used in the respective minimizations. In order to be able to compare these two
functions, we introduce ε1(s) and ε2(s) as the epsilons that yield s as minimum, i.e.,
such that

min
x

α̃ε1(s)(A(x)) = s,

min
x

αε2(s)(A(x)) = s.

In this way, we obtain two new functions x∗
1(s) and x∗

2(s) as the respective minimizers
of the smoothed and pseudospectral abscissa, with smoothing epsilons ε1(s) and ε2(s)
and thus with minima s ≤ 0. Concisely put,

x∗
1(s) := χ∗

1(ε1(s)) = arg min
x

α̃ε1(s)(A(x)),

x∗
2(s) := χ∗

2(ε2(s)) = arg min
x

αε2(s)(A(x)).
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Fig. 6.4. The H2-norm (left) and the H∞-norm (right) of the unshifted systems for minimizers
x∗
1(s) obtained by the minimization of the smoothed spectral abscissa (with ◦) and for minimizers

x∗
2(s) obtained by the minimization of the pseudospectral abscissa (with �).

According to Remark 2 following Theorem 4.1 and (5.2), x∗
1(s) and x∗

2(s), respectively,
minimize the H2-norm and H∞-norm of a shifted system with transfer function Hs.
This justifies comparing x∗

1 and x∗
2 for the same s.

Because we are, in the end, interested only in the properties of the unshifted
systems, we show in Figure 6.4, as a function of s, norms ‖zI − A(x∗

1(s))‖H2 and
‖zI−A(x∗

2(s))‖H2 . In other words, we compare the H2-norms of the unshifted transfer
function, evaluated at the smoothed spectral abscissa minimizers x∗

1(s) on the one
hand and at the pseudospectral abscissa minimizers x∗

2(s) on the other hand. In
the left frame of Figure 6.4, we see that the H2-norms of the smoothed spectral
abscissa minimizers are everywhere smaller than those of the pseudospectral abscissa
minimizers, except for s very close to the minimal spectral abscissa. For s close to
zero, the difference between the two H2-norms becomes very small and, for s = 0, the
H2-norm of the smoothed spectral abscissa minimizer is only just below the one of
the pseudospectral abscissa minimizer. This implies that the optimal H∞-minimizer,
being the pseudospectral abscissa minimizer x∗

2(0), is accompanied by an H2-norm
that is only slightly worse compared to the optimal H2-norm.

We now make the same comparison for the H∞-norm. In the right frame of Fig-
ure 6.4, we have plotted ‖zI−A(x∗

i (s))‖H∞ for i = 1, 2. Again, the difference between
the H∞-norm evaluated at the pseudospectral abscissa minimizers and smoothed spec-
tral abscissa minimizers is small for s between −1 and 0. For s = 0, the optimal
H∞-norm evaluated at x∗

2 is naturally smaller than the H∞-norm at x∗
1. Surprisingly

though, for almost all of the other shifts, the H∞-norms of the smoothed spectral
abscissa minimizers are better than the H∞-norms of the pseudospectral abscissa
minimizers.

6.3. Computational cost. Finally, we compare the computational cost of the
smoothed spectral abscissa α̃ε with two other robust stability measures: the pseu-
dospectral abscissa αε and the robust spectral abscissa αδ. Each of these measures
can be used as Φstab in (1.1) and as such, will be evaluated several times in the inner
iterations of an optimization algorithm. Thus, the efficiency by which Φstab can be
evaluated has a direct influence on the overall efficiency of the optimization method
for solving (1.1).

The details of the numerical methods used to compute each measure are listed in
Table 6.2. From these, the criss-cross algorithm with a structure-preserving Hamil-
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Table 6.2

Algorithms to compute the three stability measures.

Φstab Algorithm Convergence Inner solve (software)
αε criss-cross [11] quadratic Hamiltonian (Hapack based on [5])
αδ bisection [8] linear SDP (YALMIP [22], SeDuMi [27])
α̃ε Dekker–Brent superlinear Lyapunov (Bartels–Stewart [4])

Table 6.3

Timings and inner iterations of the three stability measures. The timings were done with 100
samples, and the inner iterations are given as the number of inner solves in Table 6.2.

Ex. Φstab
ε, δ Min Mean Max

(logspace) (sec.) (its.) (sec.) (its.) (sec.) (its.)

1

αε (-15,0,20) 1.20e−03 (3) 1.79e−03 (4) 2.71e−03 (8)
αδ (-2,0,20) 5.58e+00 (32) 6.18e+00 (32) 7.71e+00 (32)
α̃ε (-15,0,20) 4.23e−03 (7) 7.92e−03 (16) 1.57e−02 (30)

2

αε (-12,0,20) 2.16e−03 (3) 3.09e−03 (5) 5.49e−03 (8)
αδ (-03,0,20) 2.99e+01 (54) 1.79e+02 (149) 1.63e+03 (≥999)
α̃ε (-15,0,20) 6.31e−03 (10) 1.25e−02 (22) 2.20e−02 (39)

tonian eigenvalue solver is to be preferred. To the best of our knowledge, the listed
bisection algorithm is the only known implementation for computing αδ. Specifically,
we bisect until an absolute tolerance of 10εmach is satisfied and in each bisection step,
we check the feasibility of an SDP with SeDuMi 1.1R3.

Regarding the smoothed spectral abscissa, we use Dekker–Brent, implemented
by matlab’s fzero with an absolute tolerance εmach, to find the unique root of
the function g(s) := 1/f(A, s) − ε. The reason for using the reciprocal instead of
f(A, s) − 1/ε is that the former is better behaved numerically. Most of the time, we
observed superlinear convergence. Recall that evaluating f(A, s) involves solving a
Lyapunov equation, which is done by the Bartels–Stewart algorithm, implemented by
lyap in matlab.

We remark that our implementation for computing α̃ε is very preliminary, but
it seems to work well for the model problems we tried. Besides some heuristics on
setting up a bracketing interval, the procedure is quite robust. As far as efficiency
goes, there is a lot of room for improvement. An obvious improvement is the inner
loop of fsolve where f(A, s) is evaluated for fixed A but different shifts s. Since we
solve the Lyapunov equations independently for each shift, we do not make use of the
fact that we can reuse the computed Schur factorizations in Bartels–Stewart. In exact
arithmetic, only one factorization would suffice. Furthermore, using Dekker–Brent to
solve g(s) = 0 has the benefit of robustness, but we sometimes need a lot of work to
find a bracketing interval. Since f(A, s) is smooth and convex, a safeguarded method
based on Newton may be more efficient. However, it is beyond the scope of the current
article to implement this.

In Table 6.3 we have summarized timings for the systems that we have examined
earlier with control parameters x set to zero. However, since these three measures are
quite different, comparing them is somewhat arbitrary. In order to have an impression
of the computational cost, we computed each measure for a sensible range of its
regularization parameter ε or δ. It is clear from the table that the pseudospectral and
smoothed spectral abscissa are comparable in computational cost and that the robust
spectral abscissa is orders of magnitudes slower.
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7. Conclusions. A smooth relaxation of the nonsmooth spectral abscissa func-
tion was introduced as an alternative stability measure, with the advantage that
derivative-based optimization techniques can readily be used for its optimization. For-
mulae for the efficient computation and derivative evaluation of the smoothed spectral
abscissa were deduced based on the solution of a primal-dual Lyapunov equation pair.

Besides its direct minimization, which can be used to find stabilizing controllers,
a second optimization formulation was shown to be applicable to solve fixed-order H2-
optimization problems. Moreover, a guaranteed bound on the distance to instability
was established by relating the results to the H∞-norm. The robust stabilization by
use of these two optimization problems involving the smoothed spectral abscissa was
illustrated with numerical examples, and also a comparative study of the computa-
tional complexity cost was made.
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Abstract. We propose data profiles as a tool for analyzing the performance of derivative-free
optimization solvers when there are constraints on the computational budget. We use performance
and data profiles, together with a convergence test that measures the decrease in function value, to
analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth problems.
Our results provide estimates for the performance difference between these solvers, and show that
on these problems, the model-based solver tested performs better than the two direct search solvers
tested.

Key words. derivative-free optimization, benchmarking, performance evaluation, deterministic
simulations, computational budget

AMS subject classifications. 90C56, 65Y20, 65K10

DOI. 10.1137/080724083

1. Introduction. Derivative-free optimization has experienced a renewed inter-
est over the past decade that has encouraged a new wave of theory and algorithms.
While this research includes computational experiments that compare and explore the
properties of these algorithms, there is no consensus on the benchmarking procedures
that should be used to evaluate derivative-free algorithms.

We explore benchmarking procedures for derivative-free optimization algorithms
when there is a limited computational budget. The focus of our work is the uncon-
strained optimization problem

min {f(x) : x ∈ R
n} ,(1.1)

where f : R
n → R may be noisy or nondifferentiable and, in particular, in the case

where the evaluation of f is computationally expensive. These expensive optimization
problems arise in science and engineering because evaluation of the function f often
requires a complex deterministic simulation based on solving the equations (for ex-
ample, nonlinear eigenvalue problems, ordinary or partial differential equations) that
describe the underlying physical phenomena. The computational noise associated
with these complex simulations means that obtaining derivatives is difficult and unre-
liable. Moreover, these simulations often rely on legacy or proprietary codes and hence
must be treated as black-box functions, necessitating a derivative-free optimization
algorithm.

Several comparisons have been made of derivative-free algorithms on noisy opti-
mization problems that arise in applications. In particular, we mention [7, 10, 14, 17,
22]. The most ambitious work in this direction [7] is a comparison of six derivative-
free optimization algorithms on two variations of a groundwater problem specified
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by a simulator. In this work algorithms are compared by their trajectories (plot of
the best function value against the number of evaluations) until the solver satisfies a
convergence test based on the resolution of the simulator. The work in [7] also ad-
dresses hidden constraints, regions where the function does not return a proper value,
a setting in which we have not yet applied the methodology presented here.

Benchmarking derivative-free algorithms on selected applications with trajectory
plots provide useful information to users with related applications. In particular, users
can find the solver that delivers the largest reduction within a given computational
budget. However, the conclusions in these computational studies do not readily ex-
tend to other applications. Further, when testing larger sets of problems it becomes
increasingly difficult to understand the overall performance of solvers using a single
trajectory plot for each problem.

Most researchers have relied on a selection of problems from the CUTEr [9] collec-
tion of optimization problems for their work on testing and comparing derivative-free
algorithms. Work in this direction includes [3, 14, 16, 18, 20]. The performance data
gathered in these studies is the number of function evaluations required to satisfy
a convergence test when there is a limit μf on the number of function evaluations.
The convergence test is sometimes related to the accuracy of the current iterate as an
approximation to a solution, while in other cases it is related to a parameter in the
algorithm. For example, a typical convergence test for trust region methods [3, 18, 20]
requires that the trust region radius be smaller than a given tolerance.

Users with expensive function evaluations are often interested in a convergence
test that measures the decrease in function value. In section 2 we propose the con-
vergence test

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),(1.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed
for each problem as the smallest value of f obtained by any solver within a given
number μf of function evaluations. This convergence test is well suited for derivative-
free optimization because it is invariant to the affine transformation f �→ αf + β
(α > 0) and measures the function value reduction f(x0)−f(x) achieved by x relative
to the best possible reduction f(x0)− fL.

The convergence test (1.2) was used by Marazzi and Nocedal [16] but with fL set
to an accurate estimate of f at a local minimizer obtained by a derivative-based solver.
In section 2 we show that setting fL to an accurate estimate of f at a minimizer is
not appropriate when the evaluation of f is expensive, since no solver may be able to
satisfy (1.2) within the user’s computational budget.

We use performance profiles [5] with the convergence test (1.2) to evaluate the
performance of derivative-free solvers. Instead of using a fixed value of τ , we use
τ = 10−k with k ∈ {1, 3, 5, 7} so that a user can evaluate solver performance for
different levels of accuracy. These performance profiles are useful to users who need
to choose a solver that provides a given reduction in function value within a limit of
μf function evaluations.

To the authors’ knowledge, previous work with performance profiles has not varied
the limit μf on the number of function evaluations and has used large values for μf .
The underlying assumption has been that the long-term behavior of the algorithm is
of utmost importance. This assumption is not likely to hold, however, if the evaluation
of f is expensive.

Performance profiles were designed to compare solvers and thus use a performance
ratio instead of the number of function evaluations required to solve a problem. As
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a result, performance profiles do not provide the percentage of problems that can be
solved (for a given tolerance τ) with a given number of function evaluations. This
information is essential to users with expensive optimization problems and thus an
interest in the short-term behavior of algorithms. On the other hand, the data profiles
of section 2 have been designed to provide this information.

The remainder of this paper is devoted to demonstrating the use of performance
and data profiles for benchmarking derivative-free optimization solvers. Section 2
reviews the use of performance profiles with the convergence test (1.2) and defines
data profiles.

Section 3 provides a brief overview of the solvers selected to illustrate the bench-
marking process: The Nelder-Mead NMSMAX code [13], the pattern-search APPSPACK

code [11], and the model-based trust region NEWUOA code [20]. Since the emphasis
of this paper is on the benchmarking process, no attempt was made to assemble a
large collection of solvers. The selection of solvers was guided mainly by a desire to
examine the performance of a representative subset of derivative-free solvers.

Section 4 describes the benchmark problems used in the computational experi-
ments. We use a selection of problems from the CUTEr [9] collection for the basic
set, but since the functions f that describe the optimization problem are invariably
smooth, with at least two continuous derivatives, we augment this basic set with
noisy and piecewise-smooth problems derived from this basic set. The choice of noisy
problems was guided by a desire to mimic simulation-based optimization problems.

The benchmarking results in section 5 show that data and performance profiles
provide complementary information that measures the strengths and weaknesses of
optimization solvers as a function of the computational budget. Data profiles are
useful, in particular, to assess the short-term behavior of the algorithms. The results
obtained from the benchmark problems of section 4 show that the model-based solver
NEWUOA performs better than the direct search solvers NMSMAX and APPSPACK even
for noisy and piecewise-smooth problems. These results also provide estimates for the
performance differences between these solvers.

Standard disclaimers [5] in benchmarking studies apply to the results in section 5.
In particular, all solvers were tested with the default options, so results may change
if these defaults are changed. In a similar vein, our results apply only to the current
version of these solvers and this family of test problems, and may change with future
versions of these solvers and other families of problems.

2. Benchmarking derivative-free optimization solvers. Performance pro-
files, introduced by Dolan and Moré [5], have proved to be an important tool for
benchmarking optimization solvers. Dolan and Moré define a benchmark in terms of
a set P of benchmark problems, a set S of optimization solvers, and a convergence
test T . Once these components of a benchmark are defined, performance profiles
can be used to compare the performance of the solvers. In this section we first pro-
pose a convergence test for derivative-free optimization solvers and then examine the
relevance of performance profiles for optimization problems with expensive function
evaluations.

2.1. Performance profiles. Performance profiles are defined in terms of a per-
formance measure tp,s > 0 obtained for each p ∈ P and s ∈ S. For example, this
measure could be based on the amount of computing time or the number of function
evaluations required to satisfy the convergence test. Larger values of tp,s indicate
worse performance. For any pair (p, s) of problem p and solver s, the performance
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ratio is defined by

rp,s =
tp,s

min{tp,s : s ∈ S} .

Note that the best solver for a particular problem attains the lower bound rp,s = 1.
The convention rp,s =∞ is used when solver s fails to satisfy the convergence test on
problem p.

The performance profile of a solver s ∈ S is defined as the fraction of problems
where the performance ratio is at most α, that is,

ρs(α) =
1
|P| size{p ∈ P : rp,s ≤ α},(2.1)

where |P| denotes the cardinality of P . Thus, a performance profile is the probability
distribution for the ratio rp,s. Performance profiles seek to capture how well the
solver performs relative to the other solvers in S on the set of problems in P . Note,
in particular, that ρs(1) is the fraction of problems for which solver s ∈ S performs
the best and that for α sufficiently large, ρs(α) is the fraction of problems solved by
s ∈ S. In general, ρs(α) is the fraction of problems with a performance ratio rp,s
bounded by α, and thus solvers with high values for ρs(α) are preferable.

Benchmarking gradient-based optimization solvers is reasonably straightforward
once the convergence test is chosen. The convergence test is invariably based on the
gradient, for example,

‖∇f(x)‖ ≤ τ‖∇f(x0)‖

for some τ > 0 and norm ‖ · ‖. This convergence test is augmented by a limit on
the amount of computing time or the number of function evaluations. The latter
requirement is needed to catch solvers that are not able to solve a given problem.

Benchmarking gradient-based solvers is usually done with a fixed choice of toler-
ance τ that yields reasonably accurate solutions on the benchmark problems. The un-
derlying assumption is that the performance of the solvers will not change significantly
with other choices of the tolerance and that, in any case, users tend to be interested
in solvers that can deliver high-accuracy solutions. In derivative-free optimization,
however, users are interested in both low-accuracy and high-accuracy solutions. In
practical situations, when the evaluation of f is expensive, a low-accuracy solution is
all that can be obtained within the user’s computational budget. Moreover, in these
situations, the accuracy of the data may warrant only a low-accuracy solution.

Benchmarking derivative-free solvers requires a convergence test that does not
depend on evaluation of the gradient. We propose to use the convergence test

f(x) ≤ fL + τ(f(x0)− fL),(2.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed
for each problem p ∈ P as the smallest value of f obtained by any solver within a given
number μf of function evaluations. The convergence test (2.2) can also be written as

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

and this shows that (2.2) requires that the reduction f(x0) − f(x) achieved by x be
at least 1− τ times the best possible reduction f(x0)− fL.
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The convergence test (2.2) was used by Elster and Neumaier [6] but with fL
set to an accurate estimate of f at a global minimizer. This test was also used by
Marazzi and Nocedal [16] but with fL set to an accurate estimate of f at a local
minimizer obtained by a derivative-based solver. Setting fL to an accurate estimate
of f at a minimizer is not appropriate when the evaluation of f is expensive because
no solver may be able to satisfy (2.2) within the user’s computational budget. Even
for problems with a cheap f , a derivative-free solver is not likely to achieve accuracy
comparable to a derivative-based solver. On the other hand, if fL is the smallest value
of f obtained by any solver, then at least one solver will satisfy (2.2) for any τ ≥ 0.

An advantage of (2.2) is that it is invariant to the affine transformation f �→ αf+β
where α > 0. Hence, we can assume, for example, that fL = 0 and f(x0) = 1.
There is no loss in generality in this assumption because derivative-free algorithms are
invariant to the affine transformation f �→ αf + β. Indeed, algorithms for gradient-
based optimization (unconstrained and constrained) problems are also invariant to
this affine transformation.

The tolerance τ ∈ [0, 1] in (2.2) represents the percentage decrease from the start-
ing value f(x0). A value of τ = 0.1 may represent a modest decrease, a reduction
that is 90% of the total possible, while smaller values of τ correspond to larger de-
creases. As τ decreases, the accuracy of f(x) as an approximation to fL increases; the
accuracy of x as an approximation to some minimizer depends on the growth of f in
a neighborhood of the minimizer. As noted, users are interested in the performance
of derivative-free solvers for both low-accuracy and high-accuracy solutions. A user’s
expectation of the decrease possible within their computational budget will vary from
application to application.

The following new result relates the convergence test (2.2) to convergence results
for gradient-based optimization solvers.

Theorem 2.1. Assume that f : R
n �→ R is a strictly convex quadratic and that

x∗ is the unique minimizer of f . If fL = f(x∗), then x ∈ R
n satisfies the convergence

test (2.2) if and only if

‖∇f(x)‖∗ ≤ τ1/2 ‖∇f(x0)‖∗(2.3)

for the norm ‖ · ‖∗ defined by

‖v‖∗ = ‖G− 1
2 v‖2,

and G is the Hessian matrix of f .
Proof. Since f is a quadratic, G is the Hessian matrix of f , and x∗ is the unique

minimizer,

f(x) = f(x∗) + 1
2 (x − x∗)TG(x− x∗).

Hence, the convergence test (2.2) holds if and only if

(x− x∗)TG(x − x∗) ≤ τ(x0 − x∗)TG(x0 − x∗),

which in terms of the square root G
1
2 is just

‖G 1
2 (x− x∗)‖22 ≤ τ‖G 1

2 (x0 − x∗)‖22.
We obtain (2.3) by noting that since x∗ is the minimizer of the quadratic f and G is
the Hessian matrix, ∇f(x) = G(x− x∗).
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Other variations on Theorem 2.1 are of interest. For example, it is not difficult
to show, by using the same proof techniques, that (2.2) is also equivalent to

1
2‖∇f(x)‖2∗ ≤ τ (f(x0)− f(x∗)).(2.4)

This inequality shows, in particular, that we can expect that the accuracy of x,
as measured by the gradient norm ‖∇f(x)‖∗, to increase with the square root of
f(x0)− f(x∗).

Similar estimates hold for the error in x because ∇f(x) = G(x − x∗). Thus, in
view of (2.3), the convergence test (2.2) is equivalent to

‖x− x∗‖� ≤ τ1/2 ‖x0 − x∗‖�,
where the norm ‖ · ‖� is defined by

‖v‖� = ‖G 1
2 v‖2.

In this case the accuracy of x in the ‖ · ‖� norm increases with the distance of x0 from
x∗ in the ‖ · ‖� norm.

We now explore an extension of Theorem 2.1 to nonlinear functions that is valid
for an arbitrary starting point x0. The following result shows that the convergence
test (2.2) is (asymptotically) the same as the convergence test (2.4).

Lemma 2.2. If f : R
n �→ R is twice continuously differentiable in a neighborhood

of a minimizer x∗ with ∇2f(x∗) positive definite, then

lim
x→x∗

f(x) − f(x∗)
‖∇f(x)‖2∗

=
1
2
,(2.5)

where the norm ‖ · ‖∗ is defined in Theorem 2.1 and G = ∇2f(x∗).
Proof. We first prove that

lim
x→x∗

‖∇2f(x∗)1/2(x− x∗)‖
‖∇f(x)‖∗ = 1.(2.6)

This result can be established by noting that since ∇2f is continuous at x∗ and
∇f(x∗) = 0,

∇f(x) = ∇2f(x∗)(x− x∗) + r1(x), r1(x) = o(‖x− x∗‖).
If λ1 is the smallest eigenvalue of∇2f(x∗), then this relationship implies, in particular,
that

‖∇f(x)‖∗ ≥ 1
2λ

1/2
1 ‖x− x∗‖(2.7)

for all x near x∗. This inequality and the previous relationship prove (2.6). We can
now complete the proof by noting that since ∇2f is continuous at x∗ and ∇f(x∗) = 0,

f(x) = f(x∗) + 1
2‖∇2f(x∗)1/2(x− x∗)‖2 + r2(x), r2(x) = o(‖x− x∗‖2).

This relationship, together with (2.6) and (2.7), completes the proof.
Lemma 2.2 shows that there is a neighborhood N(x∗) of x∗ such that if x ∈ N(x∗)

satisfies the convergence test (2.2) with fL = f(x∗), then

‖∇f(x)‖∗ ≤ γ τ1/2 (f(x0)− f(x∗))1/2,(2.8)

where the constant γ is a slight overestimate of 21/2. Conversely, if γ is a slight
underestimate of 21/2, then (2.8) implies that (2.2) holds in some neighborhood of x∗.
Thus, in this sense, the gradient test (2.8) is asymptotically equivalent to (2.2) for
smooth functions.
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Fig. 2.1. Sample performance profile ρs(α) (logarithmic scale) for derivative-free solvers.

2.2. Data profiles. We can use performance profiles with the convergence test
(2.2) to benchmark optimization solvers for problems with expensive function evalua-
tions. In this case the performance measure tp,s is the number of function evaluations
because this is assumed to be the dominant cost per iteration. Performance profiles
provide an accurate view of the relative performance of solvers within a given number
μf of function evaluations. Performance profiles do not, however, provide sufficient
information for a user with an expensive optimization problem.

Figure 2.1 shows a typical performance profile for derivative-free optimization
solvers with the convergence test (2.2) and τ = 10−3. Users generally are interested
in the best solver, and for these problems and level of accuracy, solver S3 has the
best performance. However, it is also important to pay attention to the performance
difference between solvers. For example, consider the performance profiles ρ1 and ρ4

at a performance ratio of α = 2, ρ1(2) ≈ 55%, and ρ4(2) ≈ 35%. These profiles show
that solver S4 requires more than twice the number of function evaluations as solver
S1 on roughly 20% of the problems. This is a significant difference in performance.

The performance profiles in Figure 2.1 provide an accurate view of the perfor-
mance of derivative-free solvers for τ = 10−3. However, these results were obtained
with a limit of μf = 1300 function evaluations and thus are not directly relevant to a
user for which this limit exceeds their computational budget.

Users with expensive optimization problems are often interested in the perfor-
mance of solvers as a function of the number of functions evaluations. In other words,
these users are interested in the percentage of problems that can be solved (for a given
tolerance τ) with κ function evaluations. We can obtain this information by letting
tp,s be the number of function evaluations required to satisfy (2.2) for a given tolerance
τ , since then

ds(α) =
1
|P| size{p ∈ P : tp,s ≤ α}

is the percentage of problems that can be solved with α function evaluations. As
usual, there is a limit μf on the total number of function evaluations, and tp,s = ∞
if the convergence test (2.2) is not satisfied after μf evaluations.

Griffin and Kolda [12] were also interested in performance in terms of the number
of functions evaluations and used plots of the total number of solved problems as
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a function of the number of (penalty) function evaluations to evaluate performance.
They did not investigate how results changed if the convergence test was changed;
their main concern was to evaluate the performance of their algorithm with respect
to the penalty function.

This definition of ds is independent of the number of variables in the problem
p ∈ P . This is not realistic because, in our experience, the number of function
evaluations needed to satisfy a given convergence test is likely to grow as the number
of variables increases. We thus define the data profile of a solver s ∈ S by

ds(α) =
1
|P| size

{
p ∈ P :

tp,s
np + 1

≤ α

}
,(2.9)

where np is the number of variables in p ∈ P . We refer to a plot of (2.9) as a data
profile to acknowledge that its application is more general than the one used here
and that our choice of scaling is for illustration only. For example, we note that the
authors in [1] expect performance of stochastic global optimization algorithms to grow
faster than linear in the dimension.

With this scaling, the unit of cost is np + 1 function evaluations. This is a conve-
nient unit that can be easily translated into function evaluations. Another advantage
of this unit of cost is that ds(κ) can then be interpreted as the percentage of problems
that can be solved with the equivalent of κ simplex gradient estimates, np+1 referring
to the number of evaluations needed to compute a one-sided finite-difference estimate
of the gradient.

Performance profiles (2.1) and data profiles (2.9) are cumulative distribution func-
tions, and thus monotone increasing, step functions with a range in [0, 1]. However,
performance profiles compare different solvers, while data profiles display the raw
data. In particular, performance profiles do not provide the number of function eval-
uations required to solve any of the problems. Also note that the data profile for a
given solver s ∈ S is independent of other solvers; this is not the case for performance
profiles.

Data profiles are useful to users with a specific computational budget who need
to choose a solver that is likely to reach a given reduction in function value. The
user needs to express the computational budget in terms of simplex gradients and
examine the values of the data profile ds for all the solvers. For example, if the user
has a budget of 50 simplex gradients, then the data profiles in Figure 2.2 show that
solver S3 solves 90% of the problems at this level of accuracy. This information is not
available from the performance profiles in Figure 2.1.

We illustrate the differences between performance and data profiles with a syn-
thetic case involving two solvers. Assume that solver S1 requires k1 simplex gradients
to solve each of the first n1 problems, but fails to solve the remaining n2 problems.
Similarly, assume that solver S2 fails to solve the first n1 problems, but solves each of
the remaining n2 problems with k2 simplex gradients. Finally, assume that n1 < n2,
and that k1 < k2. In this case,

ρ1(α) ≡ n1

n1 + n2
, ρ2(α) ≡ n2

n1 + n2
,

for all α ≥ 1 if the maximum number of evaluations μf allows k2 simplex gradients.
Hence, n1 < n2 implies that ρ1 < ρ2, and thus solver S2 is preferable. This is
justifiable because S2 solves more problems for all performance ratios. On the other
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Fig. 2.2. Sample data profile ds(κ) for derivative-free solvers.

hand,

d1(α) =

⎧⎨
⎩

0, α ∈ [0, k1)

n1

n1 + n2
, α ∈ [k1,∞)

d2(α) =

⎧⎨
⎩

0, α ∈ [0, k2)

n2

n1 + n2
, α ∈ [k2,∞)

In particular, 0 = d2(k) < d1(k) for all budgets of k simplex gradients where k ∈
[k1, k2), and thus solver S1 is preferable under these budget constraints. This choice
is appropriate because S2 is not able to solve any problems with less than k2 simplex
gradients.

This example illustrates an extreme case, but this can happen in practice. For
example, the data profiles in Figure 2.2 show that solver S2 outperforms S1 with a
computational budget of k simplex gradients where k ∈ [20, 100], though the differ-
ences are small. On the other hand, the performance profiles in Figure 2.1 show that
S1 outperforms S2.

One other connection between performance profiles and data profiles needs to be
emphasized. The limiting value of ρs(α) as α→∞ is the percentage of problems that
can be solved with μf function evaluations. Thus,

ds(κ̂) = lim
α→∞ ρs(α),(2.10)

where κ̂ is the maximum number of simplex gradients performed in μf evaluations.
Since the limiting value of ρs can be interpreted as the reliability of the solver, we see
that (2.10) shows that the data profile ds measures the reliability of the solver (for a
given tolerance τ) as a function of the budget μf .

3. Derivative-free optimization solvers. The selection of solvers S that we
use to illustrate the benchmarking process was guided by a desire to examine the
performance of a representative subset of derivative-free solvers, and thus we included
both direct search and model-based algorithms. Similarly, our selection of solvers
was not guided by their theoretical properties. No attempt was made to assemble
a large collection of solvers, although we did consider more than a dozen different
solvers. Users interested in the performance of other solvers (including SID-PSM [4]
and UOBYQA [19]) can find additional results at www.mcs.anl.gov/˜more/dfo. We
note that some solvers were not tested because they require additional parameters
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outside the scope of this investigation, such as the requirement of bounds by imfil
[8, 15].

We considered only solvers that are designed to solve unconstrained optimization
problems using only function values, and with an implementation that is both serial
and deterministic. We used an implementation of the Nelder–Mead method because
this method is popular among application scientists. We also present results for
the APPSPACK pattern search method because, in a comparison of six derivative-free
methods, this code performed well in the benchmarking [7] of a groundwater problem.
We used the model-based trust region code NEWUOA because this code performed well
in a recent comparison [18] of model-based methods.

The NMSMAX code is an implementation of the Nelder–Mead method and is
available from the Matrix Computation Toolbox [13]. Other implementations of the
Nelder–Mead method exist, but this code performs well and has a reasonable default
for the size of the initial simplex. All variations on the Nelder–Mead method update
an initial simplex defined by n+1 points via a sequence of reflections, expansions, and
contractions. Not all of the Nelder–Mead codes that we examined, however, allow the
size of the initial simplex to be specified in the calling sequence. The NMSMAX code
requires an initial starting point x0, a limit on the number of function evaluations,
and the choice of a starting simplex. The user can choose either a regular simplex or
a right-angled simplex with sides along the coordinate axes. We used the right-angled
simplex with the default value of

Δ0 = max {1, ‖x0‖∞}(3.1)

for the length of the sides. This default value performs well in our testing. The right-
angled simplex was chosen to conform with the default initializations of the two other
solvers.

The APPSPACK code [11] is an asynchronous parallel pattern search method de-
signed for problems characterized by expensive function evaluations. The code can be
run in serial mode, and this is the mode used in our computational experiments. This
code requires an initial starting point x0, a limit on the number of function evalua-
tions, the choice of scaling for the starting pattern, and an initial step size. We used
unit scaling with an initial step size Δ0 defined by (3.1) so that the starting pattern
was defined by the right-angled simplex with sides of length Δ0.

The model-based trust region code NEWUOA [20, 21] uses a quadratic model
obtained by interpolation of function values at a subset of m previous trial points; the
geometry of these points is monitored and improved if necessary. We used m = 2n+1
as recommended by Powell [20]. The NEWUOA code requires an initial starting point
x0, a limit on the number of function evaluations, and the initial trust region radius.
We used Δ0 as in (3.1) for the initial trust region radius.

Our choice of initial settings ensures that all codes are given the same initial
information. As a result, both NMSMAX and NEWUOA evaluate the function at the
vertices of the right-angled simplex with sides of length Δ0. The APPSPACK code,
however, moves off this initial pattern as soon as a lower function value is obtained.

We effectively set all termination parameters to zero so that all codes terminate
only when the limit on the number of function evaluations is exceeded. In a few cases
the codes terminate early. This situation happens, for example, if the trust region
radius (size of the simplex or pattern) is driven to zero. Since APPSPACK requires a
strictly positive termination parameter for the final pattern size, we used 10−20 for
this parameter.
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Table 4.1

Distribution of problem dimensions.

np 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

4. Benchmark problems. The benchmark problems we have selected highlight
some of the properties of derivative-free solvers as they face different classes of op-
timization problems. We made no attempt to define a definitive set of benchmark
problems, but these benchmark problems could serve as a starting point for further
investigations. This test set is easily available, widely used, and allows us easily
examine different types of problems.

Our benchmark set comprises 22 of the nonlinear least squares functions defined
in the CUTEr [9] collection. Each function is defined by m components f1, . . . , fm of
n variables and a standard starting point xs.

The problems in the benchmark set P are defined by a vector (kp, np, mp, sp) of
integers. The integer kp is a reference number for the underlying CUTEr function, np
is the number of variables, mp is the number of components, and sp ∈ {0, 1} defines
the starting point via x0 = 10spxs, where xs is the standard starting point for this
function. The use of sp = 1 is helpful for testing solvers from a remote starting point
because the standard starting point tends to be close to a solution for many of the
problems.

The benchmark set P has 53 different problems. No problem is overrepresented
in P in the sense that no function kp appears more than six times. Moreover, no pair
(kp, np) appears more than twice. In all cases,

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53,

with np ≤ mp. The distribution of the dimensions np among all 53 problems is shown
in Table 4.1, the median dimension being 7.

Users interested in the precise specification of the benchmark problems in P will
find the source code for evaluating the problems in P at www.mcs.anl.gov/˜more/dfo.
This site also contains source code for obtaining the standard starting points xs and,
a file dfo.dat that provides the integers (kp, np, mp, sp).

We use the benchmark set P defined above to specify benchmark sets for three
problem classes: Smooth, piecewise smooth, and noisy problems. The smooth prob-
lems PS are defined by

f(x) =
m∑
k=1

fk(x)2.(4.1)

These functions are twice continuously differentiable on the level set associated with
x0. Only two functions (kp = 7, 16) have local minimizers that are not global mini-
mizers, but the problems defined by these functions appear only three times in PS .

The second class of problems mimics simulations that are defined by an iterative
process, for example, solving to a specified accuracy a differential equation where the
differential equation or the data depends on several parameters. These simulations are
not stochastic, but do tend to produce results that are generally considered noisy. We
believe the noise in this type of simulation is better modeled by a function with both
high-frequency and low-frequency oscillations. We thus defined the noisy problems
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Fig. 4.1. Plots of the noisy quadratic (4.5) on the box [0.4, 0.6] × [0.9, 1.1]. Surface plots (left)
and level sets (right) show the oscillatory nature of f .

PN by

f(x) = (1 + εfφ(x))
m∑
k=1

fk(x)2,(4.2)

where εf is the relative noise level and the noise function φ : R
n �→ [−1, 1] is defined

in terms of the cubic Chebyshev polynomial T3 by

φ(x) = T3(φ0(x)), T3(α) = α(4α2 − 3),(4.3)

where

φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2).(4.4)

The function φ0 defined by (4.4) is continuous and piecewise continuously differen-
tiable with 2nn! regions where φ0 is continuously differentiable. The composition of
φ0 with T3 eliminates the periodicity properties of φ0 and adds stationary points to
φ at any point where φ0 coincides with the stationary points (± 1

2 ) of T3.
Figure 4.1 illustrates the properties of the noisy function (4.2) when the underlying

smooth function (εf = 0) is a quadratic function. In this case

f(x) = (1 + 1
2‖x− x0‖2)(1 + εfφ(x)),(4.5)

where x0 = [12 , 1], and noise level εf = 10−3. The graph on the left shows f on the
two-dimensional box around x0 and sides of length 1

2 , while the graph on the right
shows the contours of f . Both graphs show the oscillatory nature of f , and that f
seems to have local minimizers near the global minimizer. Evaluation of f on a mesh
shows that, as expected, the minimal value of f is 0.99906, that is, 1 − εf to high
accuracy.

Our interest centers on smooth and noisy problems, but we also wanted to study
the behavior of derivative-free solvers on piecewise-smooth problems. An advantage
of the benchmark problems P is that a set of piecewise-smooth problems PPS can be
easily derived by setting

f(x) =
m∑
k=1

|fk(x)|.(4.6)
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These problems are continuous, but the gradient does not exist when fk(x) = 0 and
gradfk(x) �= 0 for some index k. They are twice continuously differentiable in the
regions where all the fk do not change sign. There is no guarantee that the problems
in PPS have a unique minimizer, even if (4.1) has a unique minimizer. However,
we found that all minimizers were global for all but six functions and that these six
functions had global minimizers only, if the variables were restricted to the positive
orthant. Hence, for these six functions (kp = 8, 9, 13, 16, 17, 18) the piecewise-smooth
problems are defined by

f(x) =
m∑
k=1

|fk(x+)|,(4.7)

where x+ = max(x, 0). This function is piecewise-smooth and agrees with the function
f defined by (4.6) for x ≥ 0.

5. Computational experiments. We now present the results of computational
experiments with the performance measures introduced in section 2. We used the
solver set S consisting of the three algorithms detailed in section 3 and the three
problem sets PS , PN , and PPS that correspond, respectively, to the smooth, noisy,
and piecewise-smooth benchmark sets of section 4.

The computational results center on the short-term behavior of derivative-free
algorithms. We decided to investigate the behavior of the algorithms with a limit of
100 simplex gradients. Since the problems in our benchmark sets have at most 12
variables, we set μf = 1300 so that all solvers can use at least 100 simplex gradients.

Data was obtained by recording, for each problem and solver s ∈ S, the function
values generated by the solver at each trial point. All termination tolerances were set
as described in section 3 so that solvers effectively terminate only when the limit μf
on the number of function evaluations is exceeded. In the exceptional cases where the
solver terminates early after k < μf function evaluations, we set all successive function
values to f(xk). This data is then processed to obtain a history vector hs ∈ R

μf by
setting

hs(xk) = min {f(xj) : 0 ≤ j ≤ k} ,

so that hs(xk) is the best function value produced by solver s after k function evalu-
ations. Each solver produces one history vector for each problem, and these history
vectors are gathered into a history array H , one column for each problem. For each
problem, p ∈ P , fL was taken to be the best function value achieved by any solver
within μf function evaluations, fL = mins∈S hs(xμf

).
We present the data profiles for τ = 10−k with k ∈ {1, 3, 5, 7} because we are

interested in the short-term behavior of the algorithms as the accuracy level changes.
We present performance profiles for only τ = 10−k with k ∈ {1, 5}, but a comprehen-
sive set of results is provided at www.mcs.anl.gov/˜more/dfo.

We comment only on the results for an accuracy level of τ = 10−5 and use the
other plots to indicate how the results change as τ changes. This accuracy level is
mild compared to classical convergence tests based on the gradient. We support this
claim by noting that (2.8) implies that if x satisfies the convergence test (2.2) near a
minimizer x∗, then

‖∇f(x)‖∗ ≤ 0.45 · 10−2 (f(x0)− f(x∗))1/2
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Fig. 5.1. Data profiles ds(κ) for the smooth problems PS show the percentage of problems
solved as a function of a computational budget of simplex gradients.

for τ = 10−5 and for the norm ‖ · ‖∗ defined in Theorem 2.1. If the problem is scaled
so that f(x∗) = 0 and f(x0) = 1, then

‖∇f(x)‖∗ ≤ 0.45 · 10−2.

This test is not comparable to a gradient test that uses an unscaled norm. It suggests,
however, that for well-scaled problems, the accuracy level τ = 10−5 is mild compared
to that of classical convergence tests.

5.1. Smooth problems. The data profiles in Figure 5.1 show that NEWUOA

solves the largest percentage of problems for all sizes of the computational budget
and levels of accuracy τ . This result is perhaps not surprising because NEWUOA is a
model-based method based on a quadratic approximation of the function, and thus
could be expected to perform well on smooth problems. However, the performance
differences are noteworthy.

Performance differences between the solvers tend to be larger when the com-
putational budget is small. For example, with a budget of 10 simplex gradients
and τ = 10−5, NEWUOA solves almost 35% of the problems, while both NMSMAX

and APPSPACK solve roughly 10% of the problems. Performance differences between
NEWUOA and NMSMAX tend to be smaller for larger computational budgets. For
example, with a budget of 100 simplex gradients, the performance difference between
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Fig. 5.2. Performance profiles ρs(α) (logarithmic scale) for the smooth problems PS .

NEWUOA and NMSMAX is less than 10%. On the other hand, the difference between
NEWUOA and APPSPACK is more than 25%.

A benefit of the data profiles is that they can be useful for allocating a compu-
tational budget. For example, if a user is interested in getting an accuracy level of
τ = 10−5 on at least 50% of problems, the data profiles show that NEWUOA, NMS-

MAX, and APPSPACK would require 20, 35, and 55 simplex gradients, respectively.
This kind of information is not available from performance profiles because they rely
on performance ratios.

The performance profiles in Figure 5.2 are for the smooth problems with a loga-
rithmic scale. Performance differences are also of interest in this case. In particular,
we note that both of these plots show that NEWUOA is the fastest solver in at least
55% of the problems, while NMSMAX and APPSPACK are each the fastest solvers on
fewer than 30% of the problems.

Both plots in Figure 5.2 show that the performance difference between solvers
decreases as the performance ratio increases. Since these figures are on a logarithmic
scale, however, the decrease is slow. For example, both plots show a performance
difference between NEWUOA and NMSMAX of at least 40% when the performance
ratio is two. This implies that for at least 40% of the problems NMSMAX takes at
least twice as many function evaluations to solve these problems. When τ = 10−5,
the performance difference between NEWUOA and APPSPACK is larger, at least 50%.

5.2. Noisy problems. We now present the computational results for the noisy
problems PN as defined in section 4. We used the noise level εF = 10−3 with the
nonstochastic noise function φ defined by (4.3, 4.4). We consider this level of noise
to be about right for simulations controlled by iterative solvers because tolerances in
these solvers are likely to be on the order of 10−3 or smaller. Smaller noise levels are
also of interest. For example, a noise level of 10−7 is appropriate for single-precision
computations.

Arguments for a nonstochastic noise function were presented in section 4, but
here we add that a significant advantage of using a nonstochastic noise function in
benchmarking is that this guarantees that the computational results are reproducible
up to the precision of the computations. We also note that the results obtained
with a noise function φ defined by a random number generator are similar to those
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Fig. 5.3. Data profiles ds(κ) for the noisy problems PN show the percentage of problems solved
as a function of a computational budget of simplex gradients.

obtained by the φ defined by (4.3, 4.4); results for the stochastic case can be found
at www.mcs.anl.gov/˜more/dfo.

The data profiles for the noisy problems, shown in Figure 5.3, are surprisingly
similar to those obtained for the smooth problems. The degree of similarity between
Figures 5.1 and 5.3 is much higher for small computational budgets and the smaller
values of τ . This similarity is to be expected for direct search algorithms because the
behavior of these algorithms depends only on logical comparisons between function
values, and not on the actual function values. On the other hand, the behavior of
NEWUOA is affected by noise because the model is determined by interpolating points
and is hence sensitive to changes in the function values. Since NEWUOA depends on
consistent function values, a performance drop can be expected for stochastic noise
of magnitudes near a demanded accuracy level.

An interesting difference between the data profiles for the smooth and noisy prob-
lems is that solver performances for large computational budgets tend to be closer
than in the smooth case. However, NEWUOA still manages to solve the largest per-
centage of problems for virtually all sizes of the computational budget and levels of
accuracy τ .

Little similarity exists between the performance profiles for the noisy problems PN
when τ = 10−5, shown in Figure 5.4, and those for the smooth problems. In general
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Fig. 5.4. Performance profiles ρs(α) (logarithmic scale) for the noisy problems PN .

these plots show that, as expected, noisy problems are harder to solve. For τ = 10−5,
NEWUOA is the fastest solver on about 60% of the noisy problems, while it was the
fastest solver on about 70% of the smooth problems. However, the performance differ-
ences between the solvers are about the same. In particular, both plots in Figure 5.4
show a performance difference between NEWUOA and NMSMAX of about 30% when
the performance ratio is two. As we pointed out earlier, performance differences are
an estimate of the gains that can be obtained when choosing a different solver.

5.3. Piecewise-smooth problems. The computational experiments for the
piecewise-smooth problems PPS measure how the solvers perform in the presence
of nondifferentiable kinks. There is no guarantee of convergence for the tested meth-
ods in this case. We note that recent work has focused on relaxing the assumptions
of differentiability [2].

The data profiles for the piecewise-smooth problems, shown in Figure 5.5, show
that these problems are more difficult to solve than the noisy problems PN and the
smooth problems PS . In particular, we note that no solver is able to solve more
than 40% of the problems with a computational budget of 100 simplex gradients
and τ = 10−5. By contrast, almost 70% of the noisy problems and 90% of the
smooth problems can be solved with this budget and level of accuracy. Differences in
performance are also smaller for the piecewise smooth problems. NEWUOA solves the
most problems in almost all cases, but the performance difference between NEWUOA

and the other solvers is smaller than in the noisy or smooth problems.
Another interesting observation on the data profiles is that APPSPACK solves more

problems than NMSMAX with τ = 10−5 for all sizes of the computational budget. This
is in contrast to the results for smooth and noisy problem where NMSMAX solved more
problems than APPSPACK.

The performance profiles for the piecewise-smooth problems PPS appear in Fig-
ure 5.6. The results for τ = 10−5 show that NEWUOA, NMSMAX, and APPSPACK are
the fastest solvers on roughly 50%, 30%, and 20% of the problems, respectively. This
performance difference is maintained until the performance ratio is near r = 2. The
same behavior can be seen in the performance profile with τ = 10−1, but now the
initial difference in performance is larger, more than 40%. Also note that for τ = 10−5

NEWUOA either solves the problem quickly or does not solve the problem within μf
evaluations. On the other hand, the reliability of both NMSMAX and APPSPACK in-
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Fig. 5.5. Data profiles ds(κ) for the piecewise-smooth problems PPS show the percentage of
problems solved as a function of a computational budget of simplex gradients.

Fig. 5.6. Performance profiles ρs(α) (logarithmic scale) for the piecewise-smooth problems PPS.

creases with the performance ratio, and NMSMAX eventually solves more problems
than NEWUOA.

Finally, note that the performance profiles with τ = 10−5 show that NMSMAX

solves more problems than APPSPACK, while the data profiles in Figure 5.5 show
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that APPSPACK solves more problems than NMSMAX for a computational budget of
k simplex gradients where k ∈ [25, 100]. As explained in section 2, this reversal
of solver preference can happen when there is a constraint on the computational
budget.

6. Concluding remarks. Our interest in derivative-free methods is motivated
in large part by the computationally expensive optimization problems that arise in
DOE’s SciDAC initiative. These applications give rise to the noisy optimization prob-
lems that have been the focus of this work.

We have used the convergence test (2.2) to define performance and data profiles for
benchmarking unconstrained derivative-free optimization solvers. This convergence
test relies only on the function values obtained by the solver and caters to users
with an interest in the short-term behavior of the solver. Data profiles provide crucial
information for users who are constrained by a computational budget and complement
the measures of relative performance shown by performance plots.

Our computational experiments show that the performance of the three solvers
considered varied from problem class to problem class, with the worst performance on
the set of piecewise-smooth problems PPS . While NEWUOA generally outperformed
the NMSMAX and APPSPACK implementations in our benchmarking environment, the
latter two solvers may perform better in other environments. For example, our results
did not take into account APPSPACK’s ability to work in a parallel processing envi-
ronment where concurrent function evaluations are possible. Similarly, since our test
problems were unconstrained, our results do not readily extend to problems containing
hidden constraints.

This work can be extended in several directions. For example, data profiles can
also be used to benchmark solvers that use derivative information. In this setting we
could use a gradient-based convergence test or the convergence test (2.2). Below we
outline four other possible future research directions.

Performance on larger problems. The computational experiments in section
5 used problems with at most np = 12 variables. Performance of derivative-free solvers
for larger problems is of interest, but this would require a different set of benchmark
problems.

Performance on application problems. Our choice of noisy problems is a
first step toward mimicking simulations that are defined by an iterative process, for
example, solving a set of differential equations to a specified accuracy. We plan to
validate this claim in future work. Performance of derivative-free solvers on other
classes of simulations is also of interest.

Performance of other derivative-free solvers. As mentioned before, our
emphasis is on the benchmarking process, and thus no attempt was made to assemble
a large collection of solvers. Users interested in the performance of other solvers can
find additional results at www.mcs.anl.gov/˜more/dfo. Results for additional solvers
can be added easily.

Performance with respect to input and algorithmic parameters. Our
computational experiments used default input and algorithmic parameters, but we
are aware that performance can change for other choices.
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REFERENCES

[1] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky, A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems, J. Global
Optim., 31 (2005), pp. 635–672.

[2] C. Audet and J. E. Dennis, Analysis of generalized pattern searches, SIAM J. Optim., 13
(2002), pp. 889–903.

[3] A. R. Conn, K. Scheinberg, and P. L. Toint, A derivative free optimization algorithm in
practice, in Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, 1998.
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